{"title":"Elliptic Solutions of the Toda Lattice with Constraint of Type B and Deformed Ruijsenaars–Schneider System","authors":"V. Prokofev, A. Zabrodin","doi":"10.1007/s11040-023-09462-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study elliptic solutions of the recently introduced Toda lattice with the constraint of type B and derive equations of motion for their poles. The dynamics of poles is given by the deformed Ruijsenaars–Schneider system. We find its commutation representation in the form of the Manakov triple and study properties of the spectral curve. By studying more general elliptic solutions (elliptic families), we also suggest an extension of the deformed Ruijsenaars–Schneider system to a field theory.\n</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"26 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09462-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
We study elliptic solutions of the recently introduced Toda lattice with the constraint of type B and derive equations of motion for their poles. The dynamics of poles is given by the deformed Ruijsenaars–Schneider system. We find its commutation representation in the form of the Manakov triple and study properties of the spectral curve. By studying more general elliptic solutions (elliptic families), we also suggest an extension of the deformed Ruijsenaars–Schneider system to a field theory.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.