Compositional analysis of phytochemicals and polysaccharides from Senegalese plant ingredients: Adansonia digitata (baobab), Moringa oleifera (moringa) and Hibsicus sabdariffa (hibiscus)
Hawi Debelo , Chelsey Fiecke , Anton Terekhov , Bradley Reuhs , Bruce Hamaker , Mario G. Ferruzzi
{"title":"Compositional analysis of phytochemicals and polysaccharides from Senegalese plant ingredients: Adansonia digitata (baobab), Moringa oleifera (moringa) and Hibsicus sabdariffa (hibiscus)","authors":"Hawi Debelo , Chelsey Fiecke , Anton Terekhov , Bradley Reuhs , Bruce Hamaker , Mario G. Ferruzzi","doi":"10.1016/j.nfs.2023.100144","DOIUrl":null,"url":null,"abstract":"<div><p>Certain indigenous African plant materials, including <em>Adansonia digitata</em> (baobab), <em>Moringa oleifera</em> (moringa), and <em>Hibiscus sabdariffa</em> (hibiscus) could be leveraged in food-to-food fortification strategies due to their high content of nutrients, dietary fiber, and phenolic compounds. However, more studies are needed to understand the nutritional composition of commercially available food ingredients. The objective of this study was to examine the phytochemical and polysaccharide compositions of commercially available baobab, moringa, and hibiscus ingredients from Senegal. Characterization of carotenoids, tocopherols, phenolic compounds, monosaccharide composition, and glycosyl linkage was carried out. We observed that moringa contained the greatest content of carotenoids and tocopherols. Moringa also contained significant amounts of the flavonols quercetin 3-<em>O</em>-glucoside and quercetin 3-<em>O</em>-rutinoside, while baobab had greater concentrations of flavan-3-ols. Substantial content of anthocyanins was observed for hibiscus, but not moringa or baobab. The predominant monosaccharide in baobab was xylose, while hibiscus was a combination of xylose, galactose, and glucose. The primary monosaccharides in moringa were galactose and glucose. Based on our glycosyl linkage analysis, (1 → 2)- and (1 → 2,4)-linked rhamnose were attributed to rhamnogalacturonan-I, while (1 → 4)-linked glucose and (Terminal →)-linked xylose were attributed to xyloglucans. The phytochemical and polysaccharide characterization of baobab, moringa, and hibiscus suggested that delivery of micronutrients, such as iron and carotenoids, could be impacted when applied as functional food ingredients.</p></div>","PeriodicalId":19294,"journal":{"name":"NFS Journal","volume":"32 ","pages":"Article 100144"},"PeriodicalIF":4.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NFS Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352364623000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Certain indigenous African plant materials, including Adansonia digitata (baobab), Moringa oleifera (moringa), and Hibiscus sabdariffa (hibiscus) could be leveraged in food-to-food fortification strategies due to their high content of nutrients, dietary fiber, and phenolic compounds. However, more studies are needed to understand the nutritional composition of commercially available food ingredients. The objective of this study was to examine the phytochemical and polysaccharide compositions of commercially available baobab, moringa, and hibiscus ingredients from Senegal. Characterization of carotenoids, tocopherols, phenolic compounds, monosaccharide composition, and glycosyl linkage was carried out. We observed that moringa contained the greatest content of carotenoids and tocopherols. Moringa also contained significant amounts of the flavonols quercetin 3-O-glucoside and quercetin 3-O-rutinoside, while baobab had greater concentrations of flavan-3-ols. Substantial content of anthocyanins was observed for hibiscus, but not moringa or baobab. The predominant monosaccharide in baobab was xylose, while hibiscus was a combination of xylose, galactose, and glucose. The primary monosaccharides in moringa were galactose and glucose. Based on our glycosyl linkage analysis, (1 → 2)- and (1 → 2,4)-linked rhamnose were attributed to rhamnogalacturonan-I, while (1 → 4)-linked glucose and (Terminal →)-linked xylose were attributed to xyloglucans. The phytochemical and polysaccharide characterization of baobab, moringa, and hibiscus suggested that delivery of micronutrients, such as iron and carotenoids, could be impacted when applied as functional food ingredients.
NFS JournalAgricultural and Biological Sciences-Food Science
CiteScore
11.10
自引率
0.00%
发文量
18
审稿时长
29 days
期刊介绍:
The NFS Journal publishes high-quality original research articles and methods papers presenting cutting-edge scientific advances as well as review articles on current topics in all areas of nutrition and food science. The journal particularly invites submission of articles that deal with subjects on the interface of nutrition and food research and thus connect both disciplines. The journal offers a new form of submission Registered Reports (see below). NFS Journal is a forum for research in the following areas: • Understanding the role of dietary factors (macronutrients and micronutrients, phytochemicals, bioactive lipids and peptides etc.) in disease prevention and maintenance of optimum health • Prevention of diet- and age-related pathologies by nutritional approaches • Advances in food technology and food formulation (e.g. novel strategies to reduce salt, sugar, or trans-fat contents etc.) • Nutrition and food genomics, transcriptomics, proteomics, and metabolomics • Identification and characterization of food components • Dietary sources and intake of nutrients and bioactive compounds • Food authentication and quality • Nanotechnology in nutritional and food sciences • (Bio-) Functional properties of foods • Development and validation of novel analytical and research methods • Age- and gender-differences in biological activities and the bioavailability of vitamins, minerals, and phytochemicals and other dietary factors • Food safety and toxicology • Food and nutrition security • Sustainability of food production