{"title":"Beyond HC: More sensitive tests for rare/weak alternatives","authors":"Thomas Porter, M. Stewart","doi":"10.1214/19-aos1885","DOIUrl":null,"url":null,"abstract":"Higher criticism (HC) is a popular method for large-scale inference problems based on identifying unusually high proportions of small pvalues. It has been shown to enjoy a lower-order optimality property in a simple normal location mixture model which is shared by the ‘tailor-made’ parametric generalised likelihood ratio test (GLRT) for the same model, however HC has also been shown to perform well outside this ‘narrow’ model. We develop a higher-order framework for analysing the power of these and similar procedures, which reveals the perhaps unsurprising fact that the GLRT enjoys an edge in power over HC for the normal location mixture model. We also identify a similar parametric mixture model to which HC is similarly ‘tailor-made’ and show that the situation is (at least partly) reversed there. We also show that in the normal location mixture model a procedure based on the empirical moment-generating function enjoys the same local power properties as the GLRT and may be recommended as an easy to implement (and interpret), complementary procedure to HC. Some other practical advice regarding the implementation of these procedures is provided. Finally we provide some simulation results to help interpret our theoretical findings.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
Higher criticism (HC) is a popular method for large-scale inference problems based on identifying unusually high proportions of small pvalues. It has been shown to enjoy a lower-order optimality property in a simple normal location mixture model which is shared by the ‘tailor-made’ parametric generalised likelihood ratio test (GLRT) for the same model, however HC has also been shown to perform well outside this ‘narrow’ model. We develop a higher-order framework for analysing the power of these and similar procedures, which reveals the perhaps unsurprising fact that the GLRT enjoys an edge in power over HC for the normal location mixture model. We also identify a similar parametric mixture model to which HC is similarly ‘tailor-made’ and show that the situation is (at least partly) reversed there. We also show that in the normal location mixture model a procedure based on the empirical moment-generating function enjoys the same local power properties as the GLRT and may be recommended as an easy to implement (and interpret), complementary procedure to HC. Some other practical advice regarding the implementation of these procedures is provided. Finally we provide some simulation results to help interpret our theoretical findings.