The role of genetic diversity and pre-breeding traits to improve drought and heat tolerance of bread wheat at the reproductive stage

IF 4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Sajid Shokat, Dominik K. Großkinsky, Sukhwinder Singh, Fulai Liu
{"title":"The role of genetic diversity and pre-breeding traits to improve drought and heat tolerance of bread wheat at the reproductive stage","authors":"Sajid Shokat,&nbsp;Dominik K. Großkinsky,&nbsp;Sukhwinder Singh,&nbsp;Fulai Liu","doi":"10.1002/fes3.478","DOIUrl":null,"url":null,"abstract":"<p>Extreme weather including heat waves and drought episodes are expected to increase in intensity and duration due to climate change. Wheat, being a major crop is under extreme threat to these stresses especially at the reproductive stage. This review addresses the potential of diverse wheat germplasm (originated from landraces and synthetic derivatives) to cope with drought and heat stress at the flowering stage. Here, important marker-trait associations were reported for sustainable grain production under drought and heat stress at anthesis. Likewise, the mechanisms of drought and heat resilience including gene expression and physiological traits (activities of carbohydrate metabolic and antioxidant enzymes, and endogenous hormonal responses) were explored. These studies helped to understand the genetic and physiological basis of drought and heat tolerance and certain pre-breeding traits related to osmotic adjustment, phytohormonal regulation, antioxidant metabolism, and the expression of novel genes were identified. Moreover, identified pre-breeding traits and genotypes can be utilized in breeding wheat cultivars resilient to future adverse environments.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.478","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.478","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Extreme weather including heat waves and drought episodes are expected to increase in intensity and duration due to climate change. Wheat, being a major crop is under extreme threat to these stresses especially at the reproductive stage. This review addresses the potential of diverse wheat germplasm (originated from landraces and synthetic derivatives) to cope with drought and heat stress at the flowering stage. Here, important marker-trait associations were reported for sustainable grain production under drought and heat stress at anthesis. Likewise, the mechanisms of drought and heat resilience including gene expression and physiological traits (activities of carbohydrate metabolic and antioxidant enzymes, and endogenous hormonal responses) were explored. These studies helped to understand the genetic and physiological basis of drought and heat tolerance and certain pre-breeding traits related to osmotic adjustment, phytohormonal regulation, antioxidant metabolism, and the expression of novel genes were identified. Moreover, identified pre-breeding traits and genotypes can be utilized in breeding wheat cultivars resilient to future adverse environments.

Abstract Image

遗传多样性和预育种性状在提高面包小麦生殖期抗旱耐热性中的作用
由于气候变化,包括热浪和干旱在内的极端天气的强度和持续时间预计将增加。小麦作为一种主要作物,受到这些压力的极端威胁,尤其是在繁殖阶段。本文综述了不同小麦种质(来源于地方品种和合成衍生物)在开花期应对干旱和高温胁迫的潜力。本文报道了在开花期干旱和高温胁迫下粮食可持续生产的重要标记-性状关联。同样,还探讨了抗旱和耐热性的机制,包括基因表达和生理特性(碳水化合物代谢和抗氧化酶的活性以及内源性激素反应)。这些研究有助于了解耐旱性和耐热性的遗传和生理基础,并鉴定了与渗透调节、植物激素调节、抗氧化代谢和新基因表达相关的某些育种前性状。此外,已鉴定的育种前性状和基因型可用于培育对未来不利环境有抵抗力的小麦品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food and Energy Security
Food and Energy Security Energy-Renewable Energy, Sustainability and the Environment
CiteScore
9.30
自引率
4.00%
发文量
76
审稿时长
19 weeks
期刊介绍: Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor. Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights. Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge. Examples of areas covered in Food and Energy Security include: • Agronomy • Biotechnological Approaches • Breeding & Genetics • Climate Change • Quality and Composition • Food Crops and Bioenergy Feedstocks • Developmental, Physiology and Biochemistry • Functional Genomics • Molecular Biology • Pest and Disease Management • Post Harvest Biology • Soil Science • Systems Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信