Lightweight Frame Scrambling Mechanisms for End-to-End Privacy in Edge Smart Surveillance

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alem Fitwi, Yu Chen, Sencun Zhu
{"title":"Lightweight Frame Scrambling Mechanisms for End-to-End Privacy in Edge Smart Surveillance","authors":"Alem Fitwi, Yu Chen, Sencun Zhu","doi":"10.36227/TECHRXIV.14402504.V1","DOIUrl":null,"url":null,"abstract":"As smart surveillance becomes popular in today's smart cities, millions of closed circuit television (CCTV) cameras are ubiquitously deployed that collect huge amount of visual information. All these raw visual data are often transported over a public network to distant video analytic centers. This increases the risk of interception and the spill of individuals' information into the wider cyberspace that causes privacy breaches. The edge computing paradigm allows the enforcement of privacy protection mechanisms at the point where the video frames are created. Nonetheless, existing cryptographic schemes are computationally unaffordable at the resource constrained network edge. Based on chaotic methods we propose three lightweight end-to-end (E2E) privacy-protection mechanisms: (1) a Dynamic Chaotic Image Enciphering (DyCIE) scheme that can run in real time at the edge; (2) a lightweight Regions of Interest (RoI) Masking (RoI-Mask) scheme that ensures the privacy of sensitive attributes on video frames; and (3) a novel lightweight Sinusoidal Chaotic Map (SCM) as a robust and efficient solution for enciphering frames at edge cameras. Design rationales are discussed and extensive experimental analyses substantiate the feasibility and security of the proposed schemes.","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/TECHRXIV.14402504.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

As smart surveillance becomes popular in today's smart cities, millions of closed circuit television (CCTV) cameras are ubiquitously deployed that collect huge amount of visual information. All these raw visual data are often transported over a public network to distant video analytic centers. This increases the risk of interception and the spill of individuals' information into the wider cyberspace that causes privacy breaches. The edge computing paradigm allows the enforcement of privacy protection mechanisms at the point where the video frames are created. Nonetheless, existing cryptographic schemes are computationally unaffordable at the resource constrained network edge. Based on chaotic methods we propose three lightweight end-to-end (E2E) privacy-protection mechanisms: (1) a Dynamic Chaotic Image Enciphering (DyCIE) scheme that can run in real time at the edge; (2) a lightweight Regions of Interest (RoI) Masking (RoI-Mask) scheme that ensures the privacy of sensitive attributes on video frames; and (3) a novel lightweight Sinusoidal Chaotic Map (SCM) as a robust and efficient solution for enciphering frames at edge cameras. Design rationales are discussed and extensive experimental analyses substantiate the feasibility and security of the proposed schemes.
边缘智能监控中端到端隐私的轻量级帧扰机制
随着智能监控在当今智能城市的普及,数百万台闭路电视(CCTV)摄像机被广泛部署,用于收集大量视觉信息。所有这些原始视觉数据通常通过公共网络传输到遥远的视频分析中心。这增加了拦截的风险,并增加了个人信息泄露到更广泛的网络空间的风险,从而导致隐私泄露。边缘计算模式允许在创建视频帧的点上强制执行隐私保护机制。尽管如此,在资源受限的网络边缘,现有的密码方案在计算上是负担不起的。基于混沌方法,我们提出了三种轻量级的端到端(E2E)隐私保护机制:(1)一种可以在边缘实时运行的动态混沌图像加密(DyCIE)方案;(2) 确保视频帧上敏感属性的私密性的轻量级感兴趣区域(RoI)掩码(RoI Mask)方案;以及(3)一种新的轻量级正弦混沌映射(SCM),作为在边缘相机处对帧进行加密的鲁棒且有效的解决方案。讨论了设计原理,并进行了大量的实验分析,证实了所提出方案的可行性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信