{"title":"Synthesis and Evaluation of 68Ga-NOTA-COG1410 Targeting to TREM2 of TAMs as a Specific PET Probe for Digestive Tumor Diagnosis","authors":"Dai Shi, Zhan Si, Zhan Xu, Yuan Cheng, Qingyu Lin, Zhequan Fu, Wenhui Fu, Tingting Yang, Hongcheng Shi*, Dengfeng Cheng*","doi":"10.1021/acs.analchem.1c04701","DOIUrl":null,"url":null,"abstract":"<p >Currently, positron emission tomography/computed tomography (PET/CT) is an important method for the discovery and diagnosis of digestive system tumors. However, the shortage of specific imaging tracer limits the effectiveness of PET. Triggering receptor expressed on myeloid cells 2 (TREM2) as an M2-type macrophage biomarker is receiving much attention considering its high abundance and specificity, which could be an ideal target for PET imaging. First, the expression of TREM2 in tumors and corresponding normal tissues was analyzed using a database and was verified by tissue microarrays and murine model slices, and we found that the expression of TREM2 in tumor tissues was significantly higher than that in normal tissues and enteritis tissues. Then, we established a macrophage co-culture system to obtain tumor-associated macrophages (TAMs). Compared with M1-type macrophages and tumor cells, TAMs had a higher expression level of TREM2. The novel radioligand <sup>68</sup>Ga-NOTA-COG1410 was successfully synthesized for TREM2 targeting PET imaging. The biodistribution and micro-PET/CT results showed high uptake of <sup>68</sup>Ga-NOTA-COG1410 in the tumor but not in areas of inflammation. The data testified that <sup>68</sup>Ga-NOTA-COG1410 was a specific radioligand targeting TREM2, which could be used to distinguish tumors from inflammation. Using <sup>68</sup>Ga-NOTA-COG1410, the effectiveness of PET on digestive tumors imaging may be enhanced.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"94 9","pages":"3819–3830"},"PeriodicalIF":6.7000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.1c04701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 8
Abstract
Currently, positron emission tomography/computed tomography (PET/CT) is an important method for the discovery and diagnosis of digestive system tumors. However, the shortage of specific imaging tracer limits the effectiveness of PET. Triggering receptor expressed on myeloid cells 2 (TREM2) as an M2-type macrophage biomarker is receiving much attention considering its high abundance and specificity, which could be an ideal target for PET imaging. First, the expression of TREM2 in tumors and corresponding normal tissues was analyzed using a database and was verified by tissue microarrays and murine model slices, and we found that the expression of TREM2 in tumor tissues was significantly higher than that in normal tissues and enteritis tissues. Then, we established a macrophage co-culture system to obtain tumor-associated macrophages (TAMs). Compared with M1-type macrophages and tumor cells, TAMs had a higher expression level of TREM2. The novel radioligand 68Ga-NOTA-COG1410 was successfully synthesized for TREM2 targeting PET imaging. The biodistribution and micro-PET/CT results showed high uptake of 68Ga-NOTA-COG1410 in the tumor but not in areas of inflammation. The data testified that 68Ga-NOTA-COG1410 was a specific radioligand targeting TREM2, which could be used to distinguish tumors from inflammation. Using 68Ga-NOTA-COG1410, the effectiveness of PET on digestive tumors imaging may be enhanced.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.