{"title":"GPR Image Recovery Effect on Faster R-CNN-Based Buried Target Detection","authors":"D. Kumlu","doi":"10.26866/jees.2022.5.r.127","DOIUrl":null,"url":null,"abstract":"Measurements acquired through ground-penetrating radar (GPR) may contain missing information that needs to be recovered before the implementation of any post-processing method, such as target detection, since buried target detection methods fail and cannot produce desired results if the input GPR image contains missing information. This study proves that the recovery of missing information in a GPR image has a direct influence on the performance of subsequent target detection methods. Thus, state-of-the-art matrix completion methods are applied to the GPR image with missing information in both pixel- and column-wise cases with different missing rates, such as 30% and 50%. After the GPR image is successfully recovered, the faster region-based convolutional neural network (Faster R-CNN) target detection method is applied. The performance correlation between matrix completion accuracy and the target detection method’s confidence score is analyzed using both quantitative and visual results. The obtained results demonstrate the importance of GPR image recovery prior to any post-processing implementation, such as target detection.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.5.r.127","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Measurements acquired through ground-penetrating radar (GPR) may contain missing information that needs to be recovered before the implementation of any post-processing method, such as target detection, since buried target detection methods fail and cannot produce desired results if the input GPR image contains missing information. This study proves that the recovery of missing information in a GPR image has a direct influence on the performance of subsequent target detection methods. Thus, state-of-the-art matrix completion methods are applied to the GPR image with missing information in both pixel- and column-wise cases with different missing rates, such as 30% and 50%. After the GPR image is successfully recovered, the faster region-based convolutional neural network (Faster R-CNN) target detection method is applied. The performance correlation between matrix completion accuracy and the target detection method’s confidence score is analyzed using both quantitative and visual results. The obtained results demonstrate the importance of GPR image recovery prior to any post-processing implementation, such as target detection.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.