Influence of Systematic Hull Shape Variations on Ship Stability Performances in Waves

IF 1.3 4区 工程技术 Q3 ENGINEERING, CIVIL
N. Petacco, G. Vernengo, D. Villa, Antonio Coppedé, P. Gualeni
{"title":"Influence of Systematic Hull Shape Variations on Ship Stability Performances in Waves","authors":"N. Petacco, G. Vernengo, D. Villa, Antonio Coppedé, P. Gualeni","doi":"10.5957/JOSR.12190076","DOIUrl":null,"url":null,"abstract":"The sensitivity of ship stability performance in waves to geometric variation has been investigated by means of a simulation-based design framework. The study was devoted to assess the influence of hull geometry variations on some stability failure modes, namely, parametric roll (PR) and pure loss of stability (PLS). The application has been developed by using a representative model of a postpanamax container vessel. PR and PLS phenomena have been investigated by the application of second-generation intact stability criteria (SGISc). The initial multidimensional design space has been filled by 500 design configurations identified by means of a design of experiments approach. A method developed in-house, combining the subdivision surface and free-form deformation approaches, has been used to create the whole set of design alternatives. The generated design configurations have been assessed analyzing the results derived from application of the first- and the second-level SGIS vulnerability criteria for both the selected stability failure modes. To strengthen the correlation behaviors, the design space has then been further explored by using 10k design configurations exploiting the capabilities of a surrogate model-based approximation, relying on a Gaussian process formulation. The study has been focused on the correlations among the variables and the response functions, i.e., the outcomes of the SGIS vulnerability criteria. The significance, in terms of effects, of each geometry shape variable has been investigated. Results have been discussed in the light of the SGISc structure, to provide further insight into this innovative safety framework for a modern approach to intact stability.\n 1. Introduction\n In the last 10 years, the development of the so-called second-generation intact stability criteria (SGISc) has been one of the most engaging topics addressed by the Sub-Committee on Safety Design and Construction (SDC) of the International Maritime Organization (IMO).","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":"1-14"},"PeriodicalIF":1.3000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.12190076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 7

Abstract

The sensitivity of ship stability performance in waves to geometric variation has been investigated by means of a simulation-based design framework. The study was devoted to assess the influence of hull geometry variations on some stability failure modes, namely, parametric roll (PR) and pure loss of stability (PLS). The application has been developed by using a representative model of a postpanamax container vessel. PR and PLS phenomena have been investigated by the application of second-generation intact stability criteria (SGISc). The initial multidimensional design space has been filled by 500 design configurations identified by means of a design of experiments approach. A method developed in-house, combining the subdivision surface and free-form deformation approaches, has been used to create the whole set of design alternatives. The generated design configurations have been assessed analyzing the results derived from application of the first- and the second-level SGIS vulnerability criteria for both the selected stability failure modes. To strengthen the correlation behaviors, the design space has then been further explored by using 10k design configurations exploiting the capabilities of a surrogate model-based approximation, relying on a Gaussian process formulation. The study has been focused on the correlations among the variables and the response functions, i.e., the outcomes of the SGIS vulnerability criteria. The significance, in terms of effects, of each geometry shape variable has been investigated. Results have been discussed in the light of the SGISc structure, to provide further insight into this innovative safety framework for a modern approach to intact stability. 1. Introduction In the last 10 years, the development of the so-called second-generation intact stability criteria (SGISc) has been one of the most engaging topics addressed by the Sub-Committee on Safety Design and Construction (SDC) of the International Maritime Organization (IMO).
船体形状系统变化对波浪中船舶稳定性能的影响
通过基于仿真的设计框架,研究了船舶在波浪中的稳定性性能对几何变化的敏感性。本研究旨在评估船体几何形状变化对一些稳定性失效模式的影响,即参数侧倾(PR)和纯失稳(PLS)。该应用程序是通过使用巴拿马型集装箱船的代表性模型开发的。应用第二代完整稳定性准则(SGISc)研究了PR和PLS现象。最初的多维设计空间已经被通过实验设计方法识别的500个设计配置所填充。内部开发的一种方法,结合了细分曲面和自由形式变形方法,已被用于创建整套设计备选方案。对生成的设计配置进行了评估,分析了所选稳定性失效模式应用一级和二级SGIS脆弱性标准得出的结果。为了加强相关性行为,然后通过使用10k设计配置来进一步探索设计空间,该配置利用基于代理模型的近似的能力,依赖于高斯过程公式。该研究的重点是变量和响应函数之间的相关性,即SGIS脆弱性标准的结果。研究了每个几何形状变量在影响方面的重要性。已经根据SGISc结构对结果进行了讨论,以进一步深入了解这种创新的安全框架,从而实现完整稳定性的现代方法。1.引言在过去10年中,所谓的第二代完整稳定性标准的制定一直是国际海事组织(海事组织)安全设计和建造小组委员会讨论的最具吸引力的主题之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ship Research
Journal of Ship Research 工程技术-工程:海洋
CiteScore
2.80
自引率
0.00%
发文量
12
审稿时长
6 months
期刊介绍: Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信