Ana Falcón-Piñeiro, David García-López, Lidia Gil-Martínez, José M. de la Torre, María Dolores Carmona-Yañez, Antoine Katalayi-Muleli, Enrique Guillamón, Belén Barrero-Domínguez, Silvia López-Feria, Dolores Garrido, Alberto Baños
{"title":"PTS and PTSO, two organosulfur compounds from onion by-products as a novel solution for plant disease and pest management","authors":"Ana Falcón-Piñeiro, David García-López, Lidia Gil-Martínez, José M. de la Torre, María Dolores Carmona-Yañez, Antoine Katalayi-Muleli, Enrique Guillamón, Belén Barrero-Domínguez, Silvia López-Feria, Dolores Garrido, Alberto Baños","doi":"10.1186/s40538-023-00452-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Over the past decade, the great impact of agricultural crop diseases has generated considerable economic losses and has compromised the production of edible crops at a time when the world population is only expected to rise, leading to the search for new pest management strategies. Besides that, the environmental impact resulting from the continued use of chemical pesticides has led to the search for natural and sustainable alternatives. One of the existing solutions that currently stands out for its effectiveness is the use of bioactive plant extracts. This study aims to evaluate the antimicrobial activity of propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO), two organosulfur compounds (OSCs) derived from <i>Allium cepa</i>, against a wide range of target bacteria and fungi. To this end, various in vitro procedures were conducted as well as soil sanitization tests using sterile substrate inoculated with soil-borne pathogens. In addition, this study also evaluates the pesticidal activity of both compounds through in vitro mortality and repellence tests.</p><h3>Results</h3><p>PTS and PTSO revealed inhibition activity on all the pathogens tested, belonging to different taxonomic groups. Moreover, both significatively reduced the population of bacteria and fungi in soil. The quantification of active substances in soil carried out in parallel to the microbial quantification showed that their use reduces the risk of residue accumulation since they break down quickly when applied. The set of antimicrobial tests performed demonstrated that the antifungal effect of both compounds is higher than the bactericidal effect. Lastly, PTS and PTSO showed a concentration-dependent significant biocidal and repellent effect against aphids.</p><h3>Conclusions</h3><p>The results presented in this work demonstrate that both PTS and PTSO have a significant antimicrobial and pesticidal activity against the great majority of phytopathogens tested, being a promising tool to improve pest management in crops.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"10 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00452-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-023-00452-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Over the past decade, the great impact of agricultural crop diseases has generated considerable economic losses and has compromised the production of edible crops at a time when the world population is only expected to rise, leading to the search for new pest management strategies. Besides that, the environmental impact resulting from the continued use of chemical pesticides has led to the search for natural and sustainable alternatives. One of the existing solutions that currently stands out for its effectiveness is the use of bioactive plant extracts. This study aims to evaluate the antimicrobial activity of propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO), two organosulfur compounds (OSCs) derived from Allium cepa, against a wide range of target bacteria and fungi. To this end, various in vitro procedures were conducted as well as soil sanitization tests using sterile substrate inoculated with soil-borne pathogens. In addition, this study also evaluates the pesticidal activity of both compounds through in vitro mortality and repellence tests.
Results
PTS and PTSO revealed inhibition activity on all the pathogens tested, belonging to different taxonomic groups. Moreover, both significatively reduced the population of bacteria and fungi in soil. The quantification of active substances in soil carried out in parallel to the microbial quantification showed that their use reduces the risk of residue accumulation since they break down quickly when applied. The set of antimicrobial tests performed demonstrated that the antifungal effect of both compounds is higher than the bactericidal effect. Lastly, PTS and PTSO showed a concentration-dependent significant biocidal and repellent effect against aphids.
Conclusions
The results presented in this work demonstrate that both PTS and PTSO have a significant antimicrobial and pesticidal activity against the great majority of phytopathogens tested, being a promising tool to improve pest management in crops.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.