Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nian-Sheng Tang, Xiaodong Yan, Xingqiu Zhao
{"title":"Penalized generalized empirical likelihood with a diverging number of general estimating equations for censored data","authors":"Nian-Sheng Tang, Xiaodong Yan, Xingqiu Zhao","doi":"10.1214/19-aos1870","DOIUrl":null,"url":null,"abstract":"This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored regression models with unspecified parametric likelihood. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood using the folded concave penalties. We first construct general estimating equations attaining the semiparametric efficiency bound with censored regression data and then establish the consistency and oracle properties of the penalized generalized empirical likelihood estimators. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic standard central chi-squared distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present an two-layer iterative algorithm for efficient implementation, and rigorously investigate its convergence property. The good performance of the proposed methods are demonstrated by extensive simulation studies and a real data example is provided for illustration.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1870","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

This article considers simultaneous variable selection and parameter estimation as well as hypothesis testing in censored regression models with unspecified parametric likelihood. For the problem, we utilize certain growing dimensional general estimating equations and propose a penalized generalized empirical likelihood using the folded concave penalties. We first construct general estimating equations attaining the semiparametric efficiency bound with censored regression data and then establish the consistency and oracle properties of the penalized generalized empirical likelihood estimators. Furthermore, we show that the penalized generalized empirical likelihood ratio test statistic has an asymptotic standard central chi-squared distribution. The conditions of local and restricted global optimality of weighted penalized generalized empirical likelihood estimators are also discussed. We present an two-layer iterative algorithm for efficient implementation, and rigorously investigate its convergence property. The good performance of the proposed methods are demonstrated by extensive simulation studies and a real data example is provided for illustration.
截尾数据广义估计方程具有发散数的惩罚广义经验似然
本文考虑了具有未指定参数似然的截尾回归模型中的变量选择和参数估计以及假设检验。对于这个问题,我们利用某些增长维的一般估计方程,并利用折叠凹罚分提出了一个罚分的广义经验似然。我们首先构造了获得截尾回归数据半参数有效界的一般估计方程,然后建立了惩罚广义经验似然估计的一致性和预言性。此外,我们证明了惩罚广义经验似然比检验统计量具有渐近标准中心卡方分布。讨论了加权惩罚广义经验似然估计的局部最优性和限制全局最优性的条件。我们提出了一种高效实现的两层迭代算法,并严格研究了其收敛性。通过大量的仿真研究证明了所提出的方法的良好性能,并提供了一个实际数据示例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信