Turbulent Skin Friction Reduction through the Application of Superhydrophobic Coatings to a Towed Submerged SUBOFF Body

IF 1.3 4区 工程技术 Q3 ENGINEERING, CIVIL
J. Gose, Kevin Golovin, Mathew Boban, Brian Tobelmann, E. Callison, J. Barros, M. Schultz, A. Tuteja, M. Perlin, S. Ceccio
{"title":"Turbulent Skin Friction Reduction through the Application of Superhydrophobic Coatings to a Towed Submerged SUBOFF Body","authors":"J. Gose, Kevin Golovin, Mathew Boban, Brian Tobelmann, E. Callison, J. Barros, M. Schultz, A. Tuteja, M. Perlin, S. Ceccio","doi":"10.5957/JOSR.10190060","DOIUrl":null,"url":null,"abstract":"In the present study, the drag-reducing effect of sprayed superhydrophobic surfaces (SHSs) is determined for two external turbulent boundary layer (TBL) flows. We infer the modification of skin friction created beneath TBLs using near-wall laser Doppler velocity measurements for a series of tailored SHSs. Measurements of the near-wall Reynolds stresses were used to infer reduction in skin friction between 8% and 36% in the channel flow. The best candidate SHS was then selected for application on a towed submersible body with a SUBOFF profile. The SHS was applied to roughly 60% of the model surface over the parallel midbody of the model. The measurements of the towed resistance showed an average decrease in the overall resistance from 2% to 12% depending on the speed and depth of the towed model, which suggests a SHS friction drag reduction of 4-24% with the application of the SHS on the model. The towed model results are consistent with the expected drag reduction inferred from the measurements of a near-zero pressure gradient TBL channel flow.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.10190060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4

Abstract

In the present study, the drag-reducing effect of sprayed superhydrophobic surfaces (SHSs) is determined for two external turbulent boundary layer (TBL) flows. We infer the modification of skin friction created beneath TBLs using near-wall laser Doppler velocity measurements for a series of tailored SHSs. Measurements of the near-wall Reynolds stresses were used to infer reduction in skin friction between 8% and 36% in the channel flow. The best candidate SHS was then selected for application on a towed submersible body with a SUBOFF profile. The SHS was applied to roughly 60% of the model surface over the parallel midbody of the model. The measurements of the towed resistance showed an average decrease in the overall resistance from 2% to 12% depending on the speed and depth of the towed model, which suggests a SHS friction drag reduction of 4-24% with the application of the SHS on the model. The towed model results are consistent with the expected drag reduction inferred from the measurements of a near-zero pressure gradient TBL channel flow.
超疏水涂层在水下拖曳体上的应用减少湍流表面摩擦
在本研究中,确定了喷涂超疏水表面(SHSs)对两种外部湍流边界层(TBL)流动的减阻效果。我们使用近壁激光多普勒速度测量来推断TBLs下产生的表面摩擦的变化。通过测量近壁面的雷诺应力,可以推断出通道流动中表面摩擦减少了8%至36%。然后选择最佳候选SHS应用于具有SUBOFF剖面的拖曳潜水体。SHS应用于模型平行中体上方约60%的模型表面。拖曳阻力的测量结果显示,根据拖曳模型的速度和深度,整体阻力平均下降2%至12%,这表明在模型上应用SHS后,SHS摩擦阻力减少了4-24%。拖曳模型的结果与从接近零压力梯度的TBL通道流的测量中推断出的预期阻力减少一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ship Research
Journal of Ship Research 工程技术-工程:海洋
CiteScore
2.80
自引率
0.00%
发文量
12
审稿时长
6 months
期刊介绍: Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信