Nondestructive detection of mango soluble solid content in hyperspectral imaging based on multi-combinatorial feature wavelength selection

IF 0.8 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY
J.J. Lin, Q.H. Meng, Z.F. Wu, S.Y. Pei, P. Tian, X. Huang, Z. Qiu, H.J. Chang, C. Ni, Y.Q. Huang, Y. Li
{"title":"Nondestructive detection of mango soluble solid content in hyperspectral imaging based on multi-combinatorial feature wavelength selection","authors":"J.J. Lin, Q.H. Meng, Z.F. Wu, S.Y. Pei, P. Tian, X. Huang, Z. Qiu, H.J. Chang, C. Ni, Y.Q. Huang, Y. Li","doi":"10.1556/066.2023.00014","DOIUrl":null,"url":null,"abstract":"This paper explores the prediction of the soluble solid content (SSC) in the visible and near-infrared (400–1,000 nm) regions of Baise mango. Hyperspectral images of Baise mangoes with wavelengths of 400–1,000 nm were obtained using a hyperspectral imaging system. Multiple scatter correction (MSC) was chosen to remove the effect of noise on the accuracy of the partial least squares (PLS) regression model. On this basis, the characteristic wavelengths of mango SSC were selected using the competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), uninformative variable elimination (UVE), and combined CARS + GA-SPA, CARS + UVE-SPA, and GA + UVE-SPA characteristic wavelength methods. The results show that the combined MSC-CARS + GA-SPA-PLS algorithm can reduce redundant information and improve the computational efficiency, so it is an effective method to predict the SSC of mangoes.","PeriodicalId":6908,"journal":{"name":"Acta Alimentaria","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Alimentaria","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1556/066.2023.00014","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the prediction of the soluble solid content (SSC) in the visible and near-infrared (400–1,000 nm) regions of Baise mango. Hyperspectral images of Baise mangoes with wavelengths of 400–1,000 nm were obtained using a hyperspectral imaging system. Multiple scatter correction (MSC) was chosen to remove the effect of noise on the accuracy of the partial least squares (PLS) regression model. On this basis, the characteristic wavelengths of mango SSC were selected using the competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), uninformative variable elimination (UVE), and combined CARS + GA-SPA, CARS + UVE-SPA, and GA + UVE-SPA characteristic wavelength methods. The results show that the combined MSC-CARS + GA-SPA-PLS algorithm can reduce redundant information and improve the computational efficiency, so it is an effective method to predict the SSC of mangoes.
基于多组合特征波长选择的芒果可溶性固形物高光谱成像无损检测
探讨了百色芒果在可见光和近红外(400 - 1000 nm)区域的可溶性固形物含量(SSC)的预测方法。利用高光谱成像系统,获得了波长400 ~ 1000 nm的百色芒果高光谱图像。为了消除噪声对偏最小二乘(PLS)回归模型精度的影响,采用了多重散射校正(MSC)。在此基础上,采用竞争自适应重加权采样(CARS)、遗传算法(GA)、无信息变量消去(UVE)以及CARS + GA- spa、CARS + UVE- spa、GA + UVE- spa三种特征波长方法选择芒果SSC的特征波长。结果表明,MSC-CARS + GA-SPA-PLS组合算法可以减少冗余信息,提高计算效率,是预测芒果SSC的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Alimentaria
Acta Alimentaria 农林科学-食品科技
CiteScore
1.80
自引率
0.00%
发文量
47
审稿时长
18-36 weeks
期刊介绍: Acta Alimentaria publishes original papers and reviews on food science (physics, physical chemistry, chemistry, analysis, biology, microbiology, enzymology, engineering, instrumentation, automation and economics of foods, food production and food technology, food quality, post-harvest treatments, food safety and nutrition).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信