Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Nicholas Zogbi;Samuel Liu;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;Jean Anne C. Incorvia;T. Patrick Xiao
{"title":"Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic","authors":"Nicholas Zogbi;Samuel Liu;Christopher H. Bennett;Sapan Agarwal;Matthew J. Marinella;Jean Anne C. Incorvia;T. Patrick Xiao","doi":"10.1109/JXCDC.2023.3266441","DOIUrl":null,"url":null,"abstract":"The domain wall-magnetic tunnel junction (DW-MTJ) is a versatile device that can simultaneously store data and perform computations. These three-terminal devices are promising for digital logic due to their nonvolatility, low-energy operation, and radiation hardness. Here, we augment the DW-MTJ logic gate with voltage-controlled magnetic anisotropy (VCMA) to improve the reliability of logical concatenation in the presence of realistic process variations. VCMA creates potential wells that allow for reliable and repeatable localization of domain walls (DWs). The DW-MTJ logic gate supports different fanouts, allowing for multiple inputs and outputs for a single device without affecting the area. We simulate a systolic array of DW-MTJ multiply-accumulate (MAC) units with 4-bit and 8-bit precision, which uses the nonvolatility of DW-MTJ logic gates to enable fine-grained pipelining and high parallelism. The DW-MTJ systolic array provides comparable throughput and efficiency to state-of-the-art CMOS systolic arrays while being radiation-hard. These results improve the feasibility of using DW-based processors, especially for extreme-environment applications such as space.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 1","pages":"65-73"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10106129.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10106129/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

The domain wall-magnetic tunnel junction (DW-MTJ) is a versatile device that can simultaneously store data and perform computations. These three-terminal devices are promising for digital logic due to their nonvolatility, low-energy operation, and radiation hardness. Here, we augment the DW-MTJ logic gate with voltage-controlled magnetic anisotropy (VCMA) to improve the reliability of logical concatenation in the presence of realistic process variations. VCMA creates potential wells that allow for reliable and repeatable localization of domain walls (DWs). The DW-MTJ logic gate supports different fanouts, allowing for multiple inputs and outputs for a single device without affecting the area. We simulate a systolic array of DW-MTJ multiply-accumulate (MAC) units with 4-bit and 8-bit precision, which uses the nonvolatility of DW-MTJ logic gates to enable fine-grained pipelining and high parallelism. The DW-MTJ systolic array provides comparable throughput and efficiency to state-of-the-art CMOS systolic arrays while being radiation-hard. These results improve the feasibility of using DW-based processors, especially for extreme-environment applications such as space.
利用压控磁各向异性畴壁逻辑的并行矩阵乘法
畴壁磁隧道结(DW-MTJ)是一种多功能设备,可以同时存储数据和执行计算。这三种终端设备由于其非易失性、低能耗操作和辐射硬度而有望用于数字逻辑。在这里,我们用压控磁各向异性(VCMA)增强DW-MTJ逻辑门,以在存在实际工艺变化的情况下提高逻辑级联的可靠性。VCMA创造了潜在的阱,允许域壁(DW)的可靠和可重复的定位。DW-MTJ逻辑门支持不同的扇出,允许在不影响区域的情况下为单个设备提供多个输入和输出。我们模拟了一个具有4位和8位精度的DW-MTJ乘累加(MAC)单元的收缩阵列,该阵列使用DW-MaTJ逻辑门的非易失性来实现细粒度流水线和高并行性。DW-MTJ收缩阵列在抗辐射的同时,提供了与最先进的CMOS收缩阵列相当的吞吐量和效率。这些结果提高了使用基于DW的处理器的可行性,尤其是在太空等极端环境应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信