Sums of Two-Parameter Deformations of Multiple Polylogarithms

Pub Date : 2021-10-08 DOI:10.1007/s11040-021-09407-0
Masaki Kato
{"title":"Sums of Two-Parameter Deformations of Multiple Polylogarithms","authors":"Masaki Kato","doi":"10.1007/s11040-021-09407-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a generating function of sums of two-parameter deformations of multiple polylogarithms, denoted by Φ<sub>2</sub>(<i>a</i>;<i>p</i>,<i>q</i>), and study a <i>q</i>-difference equation satisfied by it. We show that this <i>q</i>-difference equation can be solved by expanding Φ<sub>2</sub>(<i>a</i>;<i>p</i>,<i>q</i>) into power series of the parameter <i>p</i> and then using the method of variation of constants. By letting <span>\\(p \\rightarrow 0\\)</span> in the main theorem, we find that the generating function of sums of <i>q</i>-interpolated multiple zeta values can be written in terms of the <i>q</i>-hypergeometric function <sub>3</sub><i>ϕ</i><sub>2</sub>, which is due to Li-Wakabayashi.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-021-09407-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-021-09407-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a generating function of sums of two-parameter deformations of multiple polylogarithms, denoted by Φ2(a;p,q), and study a q-difference equation satisfied by it. We show that this q-difference equation can be solved by expanding Φ2(a;p,q) into power series of the parameter p and then using the method of variation of constants. By letting \(p \rightarrow 0\) in the main theorem, we find that the generating function of sums of q-interpolated multiple zeta values can be written in terms of the q-hypergeometric function 3ϕ2, which is due to Li-Wakabayashi.

分享
查看原文
多个多对数的双参数变形和
本文引入了一个多对数双参数变形和的生成函数Φ2(a;p,q),并研究了它所满足的q差分方程。我们证明了将Φ2(a;p,q)展开为参数p的幂级数,然后用变分常数的方法可以求解这个q-差分方程。通过将\(p \rightarrow 0\)代入主要定理,我们发现q插值的多个zeta值的和的生成函数可以用q超几何函数3ϕ2表示,这是由Li-Wakabayashi提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信