Guest Editorial Special Topic on Oxide Electronics for Beyond CMOS Logic and Memory

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Dmitri E. Nikonov
{"title":"Guest Editorial Special Topic on Oxide Electronics for Beyond CMOS Logic and Memory","authors":"Dmitri E. Nikonov","doi":"10.1109/JXCDC.2022.3207087","DOIUrl":null,"url":null,"abstract":"As is well known, the traditional electronics as well as exploratory logic and memory devices have relied on mono- or bi-elemental semiconductors for many decades. Oxides served an indispensable, but still secondary role of capacitor dielectrics, insulation, tunneling barriers, and so on. The functionality of oxides putting them at the center stage of computing (such as conduction, ferroelectricity, magnetic/spin, piezoelectric, ion drift, metal–insulator transitions, etc.) was researched from the material science side throughout this time. However, the work on realistic computing devices based on these properties really took off in the past decade. Oxides allow for a wider variety of phenomena which can be utilized (multiferroic materials, spin waves, to name a few). They require more sophisticated theoretical treatment (such as indirect exchange, Dzyaloshinskii–Moriya interaction, and topological materials) than traditional semi-conductors. In some cases, the single crystal state and close to atomically flat interfaces require novel fabrication methods. All these provide exciting opportunities to advance computing.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9903013/09906568.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9906568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

As is well known, the traditional electronics as well as exploratory logic and memory devices have relied on mono- or bi-elemental semiconductors for many decades. Oxides served an indispensable, but still secondary role of capacitor dielectrics, insulation, tunneling barriers, and so on. The functionality of oxides putting them at the center stage of computing (such as conduction, ferroelectricity, magnetic/spin, piezoelectric, ion drift, metal–insulator transitions, etc.) was researched from the material science side throughout this time. However, the work on realistic computing devices based on these properties really took off in the past decade. Oxides allow for a wider variety of phenomena which can be utilized (multiferroic materials, spin waves, to name a few). They require more sophisticated theoretical treatment (such as indirect exchange, Dzyaloshinskii–Moriya interaction, and topological materials) than traditional semi-conductors. In some cases, the single crystal state and close to atomically flat interfaces require novel fabrication methods. All these provide exciting opportunities to advance computing.
超越CMOS逻辑和存储器的氧化物电子客座编辑专题
众所周知,几十年来,传统的电子器件以及探索性逻辑器件和存储器件都依赖于单元素或双元素半导体。氧化物在电容器介质、绝缘、隧道屏障等方面起着不可缺少的作用,但仍然是次要的作用。氧化物的功能(如导电、铁电性、磁性/自旋、压电、离子漂移、金属绝缘体跃迁等)在这段时间内从材料科学方面进行了研究。然而,基于这些属性的现实计算设备的工作在过去十年中才真正起飞。氧化物允许更广泛的现象,可以利用(多铁材料,自旋波,仅举几例)。它们需要比传统半导体更复杂的理论处理(如间接交换、Dzyaloshinskii-Moriya相互作用和拓扑材料)。在某些情况下,单晶状态和接近原子平面的界面需要新的制造方法。所有这些都为推进计算提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信