Gene enrichment analysis and protein–protein interaction network topology delineates S-Phase kinase-associated protein 1 and catenin beta-1 as potential signature genes linked to glioblastoma prognosis
K. Ashwini, Pavan Gollapalli, S. Shetty, A. Raghotham, P. Shetty, Jayaprakash Shetty, N. Kumari
{"title":"Gene enrichment analysis and protein–protein interaction network topology delineates S-Phase kinase-associated protein 1 and catenin beta-1 as potential signature genes linked to glioblastoma prognosis","authors":"K. Ashwini, Pavan Gollapalli, S. Shetty, A. Raghotham, P. Shetty, Jayaprakash Shetty, N. Kumari","doi":"10.4103/bbrj.bbrj_344_22","DOIUrl":null,"url":null,"abstract":"Background: Glioblastoma (GBM) is the most malignant and accounts for 60% of brain tumors in adults. Current therapy for GBM involves surgical removal of the tumor followed by radiotherapy with concomitant adjuvant therapy temozolomide. Despite improvements in therapy, patient survival remains low. The exact etiology of a brain tumor is uncertain, and numerous unknown genes are involved in the progression of GBM. The aim of the present study was to evaluate various genes involved in GBM through bioinformatic approach. Methods: In the present study, gene expression profile of GSE68424 was retrieved from the GEO database to explore the genes in GBM. Results: Analysis of expression profile data revealed that 33 genes were upregulated and 1189 genes were downregulated based on the log2 fold change cut-off criteria. The genes S-Phase kinase-associated protein 1 (SKP1) and Catenin beta-1 (CTNNB1) have been linked to GBM prognosis. Conclusion: SKP1 and CTNNB1 were identified as a candidate gene for GBM study as a result of these findings. Catenin beta-1 was the protein with the highest closeness centrality value and is the key component of canonical Wnt signaling downstream pathway. More study is needed to establish the molecular function of SKP1 and CTNNB1 in GBM development, as well as the biomarker's specificity and sensitivity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/bbrj.bbrj_344_22","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioblastoma (GBM) is the most malignant and accounts for 60% of brain tumors in adults. Current therapy for GBM involves surgical removal of the tumor followed by radiotherapy with concomitant adjuvant therapy temozolomide. Despite improvements in therapy, patient survival remains low. The exact etiology of a brain tumor is uncertain, and numerous unknown genes are involved in the progression of GBM. The aim of the present study was to evaluate various genes involved in GBM through bioinformatic approach. Methods: In the present study, gene expression profile of GSE68424 was retrieved from the GEO database to explore the genes in GBM. Results: Analysis of expression profile data revealed that 33 genes were upregulated and 1189 genes were downregulated based on the log2 fold change cut-off criteria. The genes S-Phase kinase-associated protein 1 (SKP1) and Catenin beta-1 (CTNNB1) have been linked to GBM prognosis. Conclusion: SKP1 and CTNNB1 were identified as a candidate gene for GBM study as a result of these findings. Catenin beta-1 was the protein with the highest closeness centrality value and is the key component of canonical Wnt signaling downstream pathway. More study is needed to establish the molecular function of SKP1 and CTNNB1 in GBM development, as well as the biomarker's specificity and sensitivity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.