Asymptotic distribution and detection thresholds for two-sample tests based on geometric graphs

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
B. Bhattacharya
{"title":"Asymptotic distribution and detection thresholds for two-sample tests based on geometric graphs","authors":"B. Bhattacharya","doi":"10.1214/19-AOS1913","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of testing the equality of two multivariate distributions based on geometric graphs, constructed using the inter-point distances between the observations. These include the test based on the minimum spanning tree and the K-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent, and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the K-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"48 1","pages":"2879-2903"},"PeriodicalIF":3.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-AOS1913","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we consider the problem of testing the equality of two multivariate distributions based on geometric graphs, constructed using the inter-point distances between the observations. These include the test based on the minimum spanning tree and the K-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent, and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the K-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.
基于几何图的两样本检验的渐近分布和检测阈值
在本文中,我们考虑了基于几何图的两个多元分布的相等性检验问题,几何图是使用观测值之间的点间距离构建的。其中包括基于最小生成树和K近邻(NN)图的测试等。这些测试是渐近无分布的、普遍一致的,并且计算效率高,这使得它们在现代应用中特别有用。然而,对这些测试的功率特性知之甚少。本文利用稳定几何图的理论,在Poissonized设置中,导出了这些检验在一般备选方案下的渐近分布。利用此方法,获得了基于K-NN图的测试的检测阈值和极限局部幂,其中出现了取决于维数的有趣指数。这提供了一种方法来比较和证明这些测试在不同示例中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信