Detecting relevant changes in the mean of nonstationary processes—A mass excess approach

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
H. Dette, Weichi Wu
{"title":"Detecting relevant changes in the mean of nonstationary processes—A mass excess approach","authors":"H. Dette, Weichi Wu","doi":"10.1214/19-aos1811","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of testing if a sequence of means (μt)t=1,...,n of a non-stationary time series (Xt)t=1,...,n is stable in the sense that the difference of the means μ1 and μt between the initial time t = 1 and any other time is smaller than a given threshold, that is |μ1 − μt| ≤ c for all t = 1, . . . , n. A test for hypotheses of this type is developed using a bias corrected monotone rearranged local linear estimator and asymptotic normality of the corresponding test statistic is established. As the asymptotic variance depends on the location of the roots of the equation |μ1 − μt| = c a new bootstrap procedure is proposed to obtain critical values and its consistency is established. As a consequence we are able to quantitatively describe relevant deviations of a non-stationary sequence from its initial value. The results are illustrated by means of a simulation study and by analyzing data examples.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"47 1","pages":"3578-3608"},"PeriodicalIF":3.2000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aos1811","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 25

Abstract

This paper considers the problem of testing if a sequence of means (μt)t=1,...,n of a non-stationary time series (Xt)t=1,...,n is stable in the sense that the difference of the means μ1 and μt between the initial time t = 1 and any other time is smaller than a given threshold, that is |μ1 − μt| ≤ c for all t = 1, . . . , n. A test for hypotheses of this type is developed using a bias corrected monotone rearranged local linear estimator and asymptotic normality of the corresponding test statistic is established. As the asymptotic variance depends on the location of the roots of the equation |μ1 − μt| = c a new bootstrap procedure is proposed to obtain critical values and its consistency is established. As a consequence we are able to quantitatively describe relevant deviations of a non-stationary sequence from its initial value. The results are illustrated by means of a simulation study and by analyzing data examples.
检测非平稳过程均值的相关变化——一种质量过剩方法
本文考虑均值序列(μt)t=1,。。。,非平稳时间序列(Xt)t=1的n,。。。,在初始时间t=1和任何其他时间之间的平均值μ1和μt的差小于给定阈值的意义上,n是稳定的,即对于所有t=1,n。使用偏差校正的单调重排局部线性估计量对这类假设进行了检验,并建立了相应检验统计量的渐近正态性。由于渐近方差取决于方程|μ1−μt|=c的根的位置,提出了一种新的bootstrap程序来获得临界值,并建立了其一致性。因此,我们能够定量描述非平稳序列与其初始值的相关偏差。通过仿真研究和数据实例分析,对结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信