Evaluation of the effects of three arsenolipids on liver damage based on element imbalance and oxidative damage

IF 4 Q2 FOOD SCIENCE & TECHNOLOGY
eFood Pub Date : 2023-07-19 DOI:10.1002/efd2.99
Jiajia Chen, Yingxiong Zhong, Xiaofei Liu, Zhuo Wang, Jianping Chen, Bingbing Song, Rui Li, Xuejing Jia, Saiyi Zhong, Xinhuang Kang
{"title":"Evaluation of the effects of three arsenolipids on liver damage based on element imbalance and oxidative damage","authors":"Jiajia Chen,&nbsp;Yingxiong Zhong,&nbsp;Xiaofei Liu,&nbsp;Zhuo Wang,&nbsp;Jianping Chen,&nbsp;Bingbing Song,&nbsp;Rui Li,&nbsp;Xuejing Jia,&nbsp;Saiyi Zhong,&nbsp;Xinhuang Kang","doi":"10.1002/efd2.99","DOIUrl":null,"url":null,"abstract":"<p>The International Agency for Research on Cancer has classified semimetal arsenic as a human carcinogen. Arsenic poisoning can severely impact human health. Arsenic can be classified into inorganic and organic arsenic, with arsenolipids (AsLs) belonging to the category of organic arsenic. The primary species of AsLs include arsenic-containing hydrocarbons (AsHCs), fatty acids, and phospholipids. AsLs are highly abundant in marine organisms and diet may be the primary source of exposure to AsLs. Although increasing evidence shows that AsLs are cytotoxic to humans, the specific toxicity and its mechanism remain unclear. This study aimed to evaluate the hepatotoxicity and possible mechanisms of the toxic effects of AsLs in mice. Three AsLs (AsHC 332, AsHC 346, and AsHC 374) were administered via gavage at a dose of 3 mg/kg for 4 weeks. The results showed that short-term exposure did not affect the normal growth and development of mice. However, it caused liver damage in mice, mainly by disrupting the metabolism of selenium, copper, zinc, and other elements related to the synthesis of antioxidant enzymes, thereby reducing the activity of antioxidant enzymes and the expression of related genes. The liver damage effect of AsHC 332 was the strongest among the three AsLs.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.99","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/efd2.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The International Agency for Research on Cancer has classified semimetal arsenic as a human carcinogen. Arsenic poisoning can severely impact human health. Arsenic can be classified into inorganic and organic arsenic, with arsenolipids (AsLs) belonging to the category of organic arsenic. The primary species of AsLs include arsenic-containing hydrocarbons (AsHCs), fatty acids, and phospholipids. AsLs are highly abundant in marine organisms and diet may be the primary source of exposure to AsLs. Although increasing evidence shows that AsLs are cytotoxic to humans, the specific toxicity and its mechanism remain unclear. This study aimed to evaluate the hepatotoxicity and possible mechanisms of the toxic effects of AsLs in mice. Three AsLs (AsHC 332, AsHC 346, and AsHC 374) were administered via gavage at a dose of 3 mg/kg for 4 weeks. The results showed that short-term exposure did not affect the normal growth and development of mice. However, it caused liver damage in mice, mainly by disrupting the metabolism of selenium, copper, zinc, and other elements related to the synthesis of antioxidant enzymes, thereby reducing the activity of antioxidant enzymes and the expression of related genes. The liver damage effect of AsHC 332 was the strongest among the three AsLs.

Abstract Image

基于元素失衡和氧化损伤评价三种砷脂对肝损伤的影响
国际癌症研究机构已将半金属砷列为人类致癌物。砷中毒会严重影响人体健康。砷可分为无机砷和有机砷,其中砷脂(AsLs)属于有机砷的范畴。asl的主要种类包括含砷烃(AsHCs)、脂肪酸和磷脂。asl在海洋生物中含量丰富,饮食可能是asl暴露的主要来源。尽管越来越多的证据表明asl对人类具有细胞毒性,但其具体毒性及其机制尚不清楚。本研究旨在评估asl对小鼠的肝毒性及其可能的毒性作用机制。3种asl (AsHC 332、AsHC 346和AsHC 374)以3mg /kg的剂量灌胃,持续4周。结果表明,短期暴露不影响小鼠的正常生长发育。然而,它对小鼠肝脏的损害主要是通过破坏硒、铜、锌等与抗氧化酶合成有关的元素的代谢,从而降低抗氧化酶的活性和相关基因的表达。3种asl中,ashc332的肝损害作用最强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eFood
eFood food research-
CiteScore
6.00
自引率
0.00%
发文量
44
期刊介绍: eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health. The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following: ● Food chemistry ● Nutrition ● Food safety ● Food and health ● Food technology and sustainability ● Food processing ● Sensory and consumer science ● Food microbiology ● Food toxicology ● Food packaging ● Food security ● Healthy foods ● Super foods ● Food science (general)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信