Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Wriddhi Chakraborty;Khandker Akif Aabrar;Jorge Gomez;Rakshith Saligram;Arijit Raychowdhury;Patrick Fay;Suman Datta
{"title":"Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS","authors":"Wriddhi Chakraborty;Khandker Akif Aabrar;Jorge Gomez;Rakshith Saligram;Arijit Raychowdhury;Patrick Fay;Suman Datta","doi":"10.1109/JXCDC.2021.3131144","DOIUrl":null,"url":null,"abstract":"Analog and RF mixed-signal cryogenic-CMOS circuits with ultrahigh gain-bandwidth product can address a range of applications such as interface circuits between superconducting (SC) single-flux quantum (SFQ) logic and cryo-dynamic random-access memory (DRAM), circuits for sensing and controlling qubits faster than their decoherence time for at-scale quantum processor. In this work, we evaluate RF performance of 18 nm gate length (\n<inline-formula> <tex-math>$L_{G}$ </tex-math></inline-formula>\n) fully depleted silicon-on-insulator (FDSOI) NMOS and PMOS from 300 to 5.5 K operating temperature. We experimentally demonstrate extrapolated peak unity current-gain cutoff frequency (\n<inline-formula> <tex-math>$f_{T}$ </tex-math></inline-formula>\n) of 495/337 GHz (\n<inline-formula> <tex-math>$1.35\\times /1.25\\times $ </tex-math></inline-formula>\n gain over 300 K) and peak maximum oscillation frequency (\n<inline-formula> <tex-math>$f_{\\mathrm {MAX}}$ </tex-math></inline-formula>\n) of 497/372 GHz (\n<inline-formula> <tex-math>$1.3\\times $ </tex-math></inline-formula>\n gain) for NMOS/PMOS, respectively, at 5.5 K. A small-signal equivalent model is developed to enable design-space exploration of RF circuits at cryogenic temperature and identify the temperature-dependent and temperature-invariant components of the extrinsic and the intrinsic FET. Finally, performance benchmarking reveals that 22 nm FDSOI cryogenic RF CMOS provides a viable option for achieving superior analog performance with giga-scale transistor integration density.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9650774/09627653.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9627653/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5

Abstract

Analog and RF mixed-signal cryogenic-CMOS circuits with ultrahigh gain-bandwidth product can address a range of applications such as interface circuits between superconducting (SC) single-flux quantum (SFQ) logic and cryo-dynamic random-access memory (DRAM), circuits for sensing and controlling qubits faster than their decoherence time for at-scale quantum processor. In this work, we evaluate RF performance of 18 nm gate length ( $L_{G}$ ) fully depleted silicon-on-insulator (FDSOI) NMOS and PMOS from 300 to 5.5 K operating temperature. We experimentally demonstrate extrapolated peak unity current-gain cutoff frequency ( $f_{T}$ ) of 495/337 GHz ( $1.35\times /1.25\times $ gain over 300 K) and peak maximum oscillation frequency ( $f_{\mathrm {MAX}}$ ) of 497/372 GHz ( $1.3\times $ gain) for NMOS/PMOS, respectively, at 5.5 K. A small-signal equivalent model is developed to enable design-space exploration of RF circuits at cryogenic temperature and identify the temperature-dependent and temperature-invariant components of the extrinsic and the intrinsic FET. Finally, performance benchmarking reveals that 22 nm FDSOI cryogenic RF CMOS provides a viable option for achieving superior analog performance with giga-scale transistor integration density.
22 nm FDSOI低温RF CMOS的表征与建模
具有超高增益带宽产品的模拟和RF混合信号低温CMOS电路可以解决一系列应用,如超导(SC)单通量量子(SFQ)逻辑和低温动态随机存取存储器(DRAM)之间的接口电路,用于感测和控制量子位的电路比其退相干时间快,用于大规模量子处理器。在这项工作中,我们评估了18nm栅极长度($L_{G}$)完全耗尽的绝缘体上硅(FDSOI)NMOS和PMOS在300至5.5K操作温度下的RF性能。我们通过实验证明了NMOS/PMOS在5.5K下分别为495/337GHz(增益超过300K时为$1.35\times/1.25\times$)的外推峰值单位电流增益截止频率($f_{T}$)和497/372GHz(增益为$1.3\times$gain)的峰值最大振荡频率($f _{MAX}$)。开发了一个小信号等效模型,以实现在低温下RF电路的设计空间探索,并识别本征和本征FET的温度相关和温度不变组件。最后,性能基准测试表明,22nm FDSOI低温RF CMOS为实现千兆级晶体管集成密度的卓越模拟性能提供了一种可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信