{"title":"Substrate Integrated Waveguide Quasi-Elliptic Filter with Arbitrary Termination Impedances","authors":"Phanam Pech, P. Kim, G. Chaudhary, Y. Jeong","doi":"10.26866/jees.2022.4.r.111","DOIUrl":null,"url":null,"abstract":"This paper presents a quasi-elliptic filter (QEF) with arbitrary termination impedances (ATI). The proposed QEF is designed by adding cross-coupling between the first and last resonators of an ATI bandpass filter (BPF) with the Chebyshev response. The proposed QEFs with ATI can be designed in even-order resonators and the location of the pair transmission zeros (TZs) is controllable. To prove the validity of the proposed design, the fourth-order QEFs with ATI were implemented on a single-layer substrate-integrated waveguide (SIW) cavity at a center frequency (f0) of 10 GHz with the pair TZs at 10 ± 1.4 GHz. These SIW QEFs with ATI improve frequency selectivity and effectively suppress the out-of-band signal with high power handling. The measured maximum insertion loss (|S21|) and minimum return loss (|S11|) of the SIW QEF with unequal real-to-real ATI are 0.93 dB and 17.4 dB, respectively, in the passband. Similarly, the maximum |S21| and minimum |SS11| of the SIW QEF with complex-to-real ATI are 1.2 dB and 18 dB, respectively.yer substrate-integrated waveguide (SIW) cavity at a center frequency (","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.4.r.111","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a quasi-elliptic filter (QEF) with arbitrary termination impedances (ATI). The proposed QEF is designed by adding cross-coupling between the first and last resonators of an ATI bandpass filter (BPF) with the Chebyshev response. The proposed QEFs with ATI can be designed in even-order resonators and the location of the pair transmission zeros (TZs) is controllable. To prove the validity of the proposed design, the fourth-order QEFs with ATI were implemented on a single-layer substrate-integrated waveguide (SIW) cavity at a center frequency (f0) of 10 GHz with the pair TZs at 10 ± 1.4 GHz. These SIW QEFs with ATI improve frequency selectivity and effectively suppress the out-of-band signal with high power handling. The measured maximum insertion loss (|S21|) and minimum return loss (|S11|) of the SIW QEF with unequal real-to-real ATI are 0.93 dB and 17.4 dB, respectively, in the passband. Similarly, the maximum |S21| and minimum |SS11| of the SIW QEF with complex-to-real ATI are 1.2 dB and 18 dB, respectively.yer substrate-integrated waveguide (SIW) cavity at a center frequency (
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.