{"title":"Regularising Transformations for Complex Differential Equations with Movable Algebraic Singularities","authors":"Thomas Kecker, Galina Filipuk","doi":"10.1007/s11040-022-09417-6","DOIUrl":null,"url":null,"abstract":"<div><p>In a 1979 paper, Okamoto introduced the space of initial values for the six Painlevé equations and their associated Hamiltonian systems, showing that these define regular initial value problems at every point of an augmented phase space, a rational surface with certain exceptional divisors removed. We show that the construction of the space of initial values remains meaningful for certain classes of second-order complex differential equations, and more generally, Hamiltonian systems, where all movable singularities of all their solutions are algebraic poles (by some authors denoted the quasi-Painlevé property), which is a generalisation of the Painlevé property. The difference here is that the initial value problems obtained in the extended phase space become regular only after an additional change of dependent and independent variables. Constructing the analogue of space of initial values for these equations in this way also serves as an algorithm to single out, from a given class of equations or system of equations, those equations which are free from movable logarithmic branch points.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11040-022-09417-6.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09417-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
In a 1979 paper, Okamoto introduced the space of initial values for the six Painlevé equations and their associated Hamiltonian systems, showing that these define regular initial value problems at every point of an augmented phase space, a rational surface with certain exceptional divisors removed. We show that the construction of the space of initial values remains meaningful for certain classes of second-order complex differential equations, and more generally, Hamiltonian systems, where all movable singularities of all their solutions are algebraic poles (by some authors denoted the quasi-Painlevé property), which is a generalisation of the Painlevé property. The difference here is that the initial value problems obtained in the extended phase space become regular only after an additional change of dependent and independent variables. Constructing the analogue of space of initial values for these equations in this way also serves as an algorithm to single out, from a given class of equations or system of equations, those equations which are free from movable logarithmic branch points.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.