J-Trajectories in 4-Dimensional Solvable Lie Group \(\mathrm {Sol}_0^4\)

Pub Date : 2022-03-06 DOI:10.1007/s11040-022-09418-5
Zlatko Erjavec, Jun-ichi Inoguchi
{"title":"J-Trajectories in 4-Dimensional Solvable Lie Group \\(\\mathrm {Sol}_0^4\\)","authors":"Zlatko Erjavec,&nbsp;Jun-ichi Inoguchi","doi":"10.1007/s11040-022-09418-5","DOIUrl":null,"url":null,"abstract":"<div><p><i>J</i>-trajectories are arc length parameterized curves in almost Hermitian manifold which satisfy the equation <span>\\(\\nabla _{{\\dot{\\gamma }}}{\\dot{\\gamma }}=q J {\\dot{\\gamma }}\\)</span>. In this paper <i>J</i>-trajectories in the solvable Lie group <span>\\(\\mathrm {Sol}_0^4\\)</span> are investigated. The first and the second curvature of a non-geodesic <i>J</i>-trajectory in an arbitrary LCK manifold whose anti Lee field has constant length are examined. In particular, the curvatures of non-geodesic <i>J</i>-trajectories in <span>\\(\\mathrm {Sol}_0^4\\)</span> are characterized.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09418-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

J-trajectories are arc length parameterized curves in almost Hermitian manifold which satisfy the equation \(\nabla _{{\dot{\gamma }}}{\dot{\gamma }}=q J {\dot{\gamma }}\). In this paper J-trajectories in the solvable Lie group \(\mathrm {Sol}_0^4\) are investigated. The first and the second curvature of a non-geodesic J-trajectory in an arbitrary LCK manifold whose anti Lee field has constant length are examined. In particular, the curvatures of non-geodesic J-trajectories in \(\mathrm {Sol}_0^4\) are characterized.

分享
查看原文
四维可解李群中的j -轨迹 \(\mathrm {Sol}_0^4\)
j轨迹是几乎厄米流形中的弧长参数化曲线,满足方程\(\nabla _{{\dot{\gamma }}}{\dot{\gamma }}=q J {\dot{\gamma }}\)。本文研究了可解李群\(\mathrm {Sol}_0^4\)中的j轨迹。研究了任意LCK流形中反李场长度为常数的非测地线j轨迹的第一曲率和第二曲率。特别地,对\(\mathrm {Sol}_0^4\)中非测地线j轨迹的曲率进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信