Embedding Hamiltonian Paths in $k$-Ary $n$-Cubes With Exponentially-Many Faulty Edges

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hongbin Zhuang, Xiao-Yan Li, Jou-Ming Chang, Cheng-Kuan Lin, Ximeng Liu
{"title":"Embedding Hamiltonian Paths in <inline-formula><tex-math notation=\"LaTeX\">$k$</tex-math></inline-formula>-Ary <inline-formula><tex-math notation=\"LaTeX\">$n$</tex-math></inline-formula>-Cubes With Exponentially-Many Faulty Edges","authors":"Hongbin Zhuang, Xiao-Yan Li, Jou-Ming Chang, Cheng-Kuan Lin, Ximeng Liu","doi":"10.1109/TC.2023.3288766","DOIUrl":null,"url":null,"abstract":"The <inline-formula><tex-math notation=\"LaTeX\">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq5-3288766.gif\"/></alternatives></inline-formula>-ary <inline-formula><tex-math notation=\"LaTeX\">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq6-3288766.gif\"/></alternatives></inline-formula>-cube <inline-formula><tex-math notation=\"LaTeX\">$Q_{n}^{k}$</tex-math><alternatives><mml:math><mml:msubsup><mml:mi>Q</mml:mi><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mi>k</mml:mi></mml:msubsup></mml:math><inline-graphic xlink:href=\"zhuang-ieq7-3288766.gif\"/></alternatives></inline-formula> is one of the most popular interconnection networks engaged as the underlying topology of data center networks, on-chip networks, and parallel and distributed systems. Due to the increasing probability of faulty edges in large-scale networks and extensive applications of the Hamiltonian path, it becomes more and more critical to investigate the fault tolerability of interconnection networks when embedding the Hamiltonian path. However, since the existing edge fault models in the current literature only focus on the entire status of faulty edges while ignoring the important information in the edge dimensions, their fault tolerability is narrowed to a minimal scope. This article first proposes the concept of the partitioned fault model to achieve an exponential scale of fault tolerance. Based on this model, we put forward two novel indicators for the bipartite networks (including <inline-formula><tex-math notation=\"LaTeX\">$Q^{k}_{n}$</tex-math><alternatives><mml:math><mml:msubsup><mml:mi>Q</mml:mi><mml:mi>n</mml:mi><mml:mi>k</mml:mi></mml:msubsup></mml:math><inline-graphic xlink:href=\"zhuang-ieq8-3288766.gif\"/></alternatives></inline-formula> with even <inline-formula><tex-math notation=\"LaTeX\">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq9-3288766.gif\"/></alternatives></inline-formula>), named partition-edge fault-tolerant Hamiltonian laceability and partition-edge fault-tolerant hyper-Hamiltonian laceability. Then, we exploit these metrics to explore the existence of Hamiltonian paths and unpaired 2-disjoint path cover in <inline-formula><tex-math notation=\"LaTeX\">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq10-3288766.gif\"/></alternatives></inline-formula>-ary <inline-formula><tex-math notation=\"LaTeX\">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq11-3288766.gif\"/></alternatives></inline-formula>-cubes with large-scale faulty edges. Moreover, we prove that all these results are optimal in the sense that the number of edge faults tolerated has attended to the best upper bound. Our approach is the first time that can still embed a Hamiltonian path and an unpaired 2-disjoint path cover into the <inline-formula><tex-math notation=\"LaTeX\">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq12-3288766.gif\"/></alternatives></inline-formula>-ary <inline-formula><tex-math notation=\"LaTeX\">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href=\"zhuang-ieq13-3288766.gif\"/></alternatives></inline-formula>-cube even if the faulty edges grow exponentially.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"72 1","pages":"3245-3258"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TC.2023.3288766","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The $k$k-ary $n$n-cube $Q_{n}^{k}$Qnk is one of the most popular interconnection networks engaged as the underlying topology of data center networks, on-chip networks, and parallel and distributed systems. Due to the increasing probability of faulty edges in large-scale networks and extensive applications of the Hamiltonian path, it becomes more and more critical to investigate the fault tolerability of interconnection networks when embedding the Hamiltonian path. However, since the existing edge fault models in the current literature only focus on the entire status of faulty edges while ignoring the important information in the edge dimensions, their fault tolerability is narrowed to a minimal scope. This article first proposes the concept of the partitioned fault model to achieve an exponential scale of fault tolerance. Based on this model, we put forward two novel indicators for the bipartite networks (including $Q^{k}_{n}$Qnk with even $k$k), named partition-edge fault-tolerant Hamiltonian laceability and partition-edge fault-tolerant hyper-Hamiltonian laceability. Then, we exploit these metrics to explore the existence of Hamiltonian paths and unpaired 2-disjoint path cover in $k$k-ary $n$n-cubes with large-scale faulty edges. Moreover, we prove that all these results are optimal in the sense that the number of edge faults tolerated has attended to the best upper bound. Our approach is the first time that can still embed a Hamiltonian path and an unpaired 2-disjoint path cover into the $k$k-ary $n$n-cube even if the faulty edges grow exponentially.
在具有指数多缺陷边的k -Ary - n -立方体中嵌入哈密顿路径
$k$k-ary $n$n-cube $Q_{n}^{k}$Qnk是最流行的互连网络之一,作为数据中心网络、片上网络以及并行和分布式系统的底层拓扑。由于大规模网络中故障边概率的增加和哈密顿路径的广泛应用,在嵌入哈密顿路径时,研究互连网络的容错性变得越来越重要。然而,由于现有文献中的边缘故障模型只关注故障边缘的整体状态,而忽略了边缘维度中的重要信息,因此其容错能力被限制在极小的范围内。本文首先提出了分区故障模型的概念,以实现指数尺度的容错。在此模型的基础上,我们提出了两种新的二部网络(包括$Q^{k}_{n}$ qk偶$k$k)指标,即分区边容错哈密顿可达性和分区边容错超哈密顿可达性。然后,我们利用这些度量来探索具有大规模错误边的k × k × n × n个立方体中哈密顿路径和未配对2-不相交路径覆盖的存在性。此外,我们证明了所有这些结果都是最优的,因为可以容忍的边缘故障的数量有最佳上界。我们的方法是第一次可以将哈密顿路径和未配对的2-不相交路径覆盖嵌入到$k$k $k$ n$n立方体中,即使错误边呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信