Human adaptative behavior to Antarctic conditions: A review of physiological aspects.

IF 4.6 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Eliani Spinelli, Jairo Werner Junior
{"title":"Human adaptative behavior to Antarctic conditions: A review of physiological aspects.","authors":"Eliani Spinelli, Jairo Werner Junior","doi":"10.1002/wsbm.1556","DOIUrl":null,"url":null,"abstract":"The Antarctic environment induces adaptive metabolic and neuroendocrine changes associated with survival, as well as increased risks to physical and mental health. Circadian disruption has been observed in Antarctic expeditioners. The main consequences appear in quality of sleep, which can affect physical and cognitive performance. Physiological adaptation to cold is mediated by the norepinephrine and thyroid hormones (T3 and 3,5-T2 metabolite). The observed changes in the hypothalamic-pituitary-thyroid (HPT) axis of expeditioners varied according to temperature, photoperiod, time spent in the cold environment and stress level. The decrease in T3 levels has frequently been associated with mood swings. Psychological and physical stressors cause disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, with consequent maintenance of high cortisol levels, leading to memory impairment, immunosuppression, and cardiometabolic and reproductive disorders. Preventive measures, such as provision of adequate food, well-established eating times, physical activity and even the use of phototherapy, can all help maintain the circadian rhythm. In addition, the use of high-tech clothing and room temperature control in research stations provide greater protection against the effects of intense cold. However, psychological stress requires a more individualized approach based on the crew's sociocultural characteristics, but it can be mitigated by mental healthcare and training in coping strategies. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2

Abstract

The Antarctic environment induces adaptive metabolic and neuroendocrine changes associated with survival, as well as increased risks to physical and mental health. Circadian disruption has been observed in Antarctic expeditioners. The main consequences appear in quality of sleep, which can affect physical and cognitive performance. Physiological adaptation to cold is mediated by the norepinephrine and thyroid hormones (T3 and 3,5-T2 metabolite). The observed changes in the hypothalamic-pituitary-thyroid (HPT) axis of expeditioners varied according to temperature, photoperiod, time spent in the cold environment and stress level. The decrease in T3 levels has frequently been associated with mood swings. Psychological and physical stressors cause disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, with consequent maintenance of high cortisol levels, leading to memory impairment, immunosuppression, and cardiometabolic and reproductive disorders. Preventive measures, such as provision of adequate food, well-established eating times, physical activity and even the use of phototherapy, can all help maintain the circadian rhythm. In addition, the use of high-tech clothing and room temperature control in research stations provide greater protection against the effects of intense cold. However, psychological stress requires a more individualized approach based on the crew's sociocultural characteristics, but it can be mitigated by mental healthcare and training in coping strategies. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.

Abstract Image

人类对南极环境的适应行为:生理方面的综述。
南极环境会导致与生存相关的适应性代谢和神经内分泌变化,并增加身心健康风险。南极探险队已经观察到昼夜节律的破坏。主要后果出现在睡眠质量上,睡眠质量会影响身体和认知表现。对寒冷的生理适应是由去甲肾上腺素和甲状腺激素(T3和3,5-T2代谢产物)介导的。观察到的实验者下丘脑-垂体-甲状腺(HPT)轴的变化随温度、光周期、在寒冷环境中的时间和压力水平而变化。T3水平的下降经常与情绪波动有关。心理和身体压力源会导致下丘脑-垂体-肾上腺(HPA)轴紊乱,从而维持高皮质醇水平,导致记忆障碍、免疫抑制以及心脏代谢和生殖障碍。预防措施,如提供充足的食物、确定的进食时间、体育活动,甚至使用光疗,都有助于维持昼夜节律。此外,在研究站使用高科技服装和室温控制可以更好地抵御严寒的影响。然而,心理压力需要根据船员的社会文化特征采取更个性化的方法,但可以通过心理健康和应对策略培训来缓解。本文分类如下:心血管疾病>分子和细胞生理心血管疾病>环境因素代谢疾病>环境因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
WIREs Mechanisms of Disease
WIREs Mechanisms of Disease MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
11.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信