Some Non-periodic p-Adic Generalized Gibbs Measures for the Ising Model on a Cayley Tree of Order k

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED
Muzaffar Rahmatullaev, Akbarkhuja Tukhtabaev
{"title":"Some Non-periodic p-Adic Generalized Gibbs Measures for the Ising Model on a Cayley Tree of Order k","authors":"Muzaffar Rahmatullaev,&nbsp;Akbarkhuja Tukhtabaev","doi":"10.1007/s11040-023-09465-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we consider a <i>p</i>-adic Ising model on a Cayley tree. The existence of non-periodic <i>p</i>-adic generalized Gibbs measures of this model is investigated. In particular, we construct <i>p</i>-adic analogue of the Bleher–Ganikhodjaev construction and generalize some constructive methods. Moreover, the boundedness of obtained measures are established, which yields the occurrence of a phase transition.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"26 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-023-09465-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we consider a p-adic Ising model on a Cayley tree. The existence of non-periodic p-adic generalized Gibbs measures of this model is investigated. In particular, we construct p-adic analogue of the Bleher–Ganikhodjaev construction and generalize some constructive methods. Moreover, the boundedness of obtained measures are established, which yields the occurrence of a phase transition.

Abstract Image

k阶Cayley树上Ising模型的一些非周期p进广义Gibbs测度
本文考虑Cayley树上的p进Ising模型。研究了该模型的非周期p进广义Gibbs测度的存在性。特别地,我们构造了Bleher-Ganikhodjaev构造的p进类似,并推广了一些构造方法。此外,建立了所得测度的有界性,从而得出相变的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信