{"title":"Multi-fidelity Bayesian Optimization of SWATH Hull Forms","authors":"L. Bonfiglio, P. Perdikaris, S. Brizzolara","doi":"10.5957/JOSR.11180102","DOIUrl":null,"url":null,"abstract":"This study presents a multi-fidelity framework that enables the construction of surrogate models capable of capturing complex correlations between design variables and quantities of interest. Resistance in calm water is investigated for a SWATH hull in a multidimensional design space using a new method to derive high-quality response surfaces through machine learning techniques based on a low number of high-fidelity computations and a larger number of less-expensive low-fidelity computations. First, a verification and validation study is presented with the goal of comparing and ranking numerical methods against experiments performed on a conventional SWATH geometry. Then, the hull geometry of a new family of unconventional SWATH hull forms with twin counter-canted struts is parametrically defined and sequentially refined using multi-fidelity Bayesian optimization. Ship resistance in calm water is finally predicted using observations from two different fidelity levels. We demonstrate that the multi-fidelity optimization framework is successful in obtaining an optimized design using a small number of high-fidelity computations and a larger number of low-fidelity computations. Simulation and optimization costs are reduced by orders of magnitude, providing accurate certificates of fidelity for the performance of the proposed design.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JOSR.11180102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 8
Abstract
This study presents a multi-fidelity framework that enables the construction of surrogate models capable of capturing complex correlations between design variables and quantities of interest. Resistance in calm water is investigated for a SWATH hull in a multidimensional design space using a new method to derive high-quality response surfaces through machine learning techniques based on a low number of high-fidelity computations and a larger number of less-expensive low-fidelity computations. First, a verification and validation study is presented with the goal of comparing and ranking numerical methods against experiments performed on a conventional SWATH geometry. Then, the hull geometry of a new family of unconventional SWATH hull forms with twin counter-canted struts is parametrically defined and sequentially refined using multi-fidelity Bayesian optimization. Ship resistance in calm water is finally predicted using observations from two different fidelity levels. We demonstrate that the multi-fidelity optimization framework is successful in obtaining an optimized design using a small number of high-fidelity computations and a larger number of low-fidelity computations. Simulation and optimization costs are reduced by orders of magnitude, providing accurate certificates of fidelity for the performance of the proposed design.
期刊介绍:
Original and Timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such, it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economic, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.