High-transconductance silicon carbide nanowire-based field-effect transistor (SiC-NWFET) for high-temperature applications

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Habeeb Mousa, K. Teker
{"title":"High-transconductance silicon carbide nanowire-based field-effect transistor (SiC-NWFET) for high-temperature applications","authors":"Habeeb Mousa, K. Teker","doi":"10.1108/mi-05-2021-0043","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based field-effect transistor (SiC-NWFET). The 3C-SiC nanowires can endure high-temperature environments due to their wide bandgap, high thermal conductivity and outstanding physical and chemical properties.\n\n\nDesign/methodology/approach\nThe metal-organic chemical vapor deposition process was used to synthesize in-situ nitrogen-doped SiC nanowires on SiO2/Si substrate. To fabricate the proposed SiC-NWFET device, the dielectrophoresis method was used to integrate the grown nanowires on the surface of pre-patterned electrodes onto the SiO2 layer on a highly doped Si substrate. The transport properties of the fabricated device were evaluated at various temperatures ranging from 25°C to 350°C.\n\n\nFindings\nThe SiC-NWFET device demonstrated an increase in conductance (from 0.43 mS to 1.2 mS) after applying a temperature of 150°C, and then a decrease in conductance (from 1.2 mS to 0.3 mS) with increasing the temperature to 350°C. The increase in conductance can be attributed to the thermionic emission and tunneling mechanisms, while the decrease can be attributed to the phonon scattering. Additionally, the device revealed high electron and hole mobilities, as well as very low resistivity values at both room temperature and high temperatures.\n\n\nOriginality/value\nHigh-temperature transport properties (above 300°C) of 3C-SiC nanowires have not been reported yet. The SiC-NWFET demonstrates a high transconductance, high electron and hole mobilities, very low resistivity, as well as good stability at high temperatures. Therefore, this study could offer solutions not only for high-power but also for low-power circuit and sensing applications in high-temperature environments (∼350°C).\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-05-2021-0043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

Purpose The purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based field-effect transistor (SiC-NWFET). The 3C-SiC nanowires can endure high-temperature environments due to their wide bandgap, high thermal conductivity and outstanding physical and chemical properties. Design/methodology/approach The metal-organic chemical vapor deposition process was used to synthesize in-situ nitrogen-doped SiC nanowires on SiO2/Si substrate. To fabricate the proposed SiC-NWFET device, the dielectrophoresis method was used to integrate the grown nanowires on the surface of pre-patterned electrodes onto the SiO2 layer on a highly doped Si substrate. The transport properties of the fabricated device were evaluated at various temperatures ranging from 25°C to 350°C. Findings The SiC-NWFET device demonstrated an increase in conductance (from 0.43 mS to 1.2 mS) after applying a temperature of 150°C, and then a decrease in conductance (from 1.2 mS to 0.3 mS) with increasing the temperature to 350°C. The increase in conductance can be attributed to the thermionic emission and tunneling mechanisms, while the decrease can be attributed to the phonon scattering. Additionally, the device revealed high electron and hole mobilities, as well as very low resistivity values at both room temperature and high temperatures. Originality/value High-temperature transport properties (above 300°C) of 3C-SiC nanowires have not been reported yet. The SiC-NWFET demonstrates a high transconductance, high electron and hole mobilities, very low resistivity, as well as good stability at high temperatures. Therefore, this study could offer solutions not only for high-power but also for low-power circuit and sensing applications in high-temperature environments (∼350°C).
用于高温应用的高跨导碳化硅纳米线基场效应晶体管(SiC NWFET)
目的系统研究高温对氮掺杂碳化硅纳米线基场效应晶体管(SiC-NWFET)传输特性的影响。3C-SiC纳米线具有宽带隙、高导热性和优异的物理化学性能,可以承受高温环境。设计/方法/方法采用金属有机化学气相沉积工艺在SiO2/Si衬底上原位合成氮掺杂的SiC纳米线。为了制造所提出的SiC NWFET器件,使用介电电泳方法将预图案化电极表面上生长的纳米线集成到高掺杂Si衬底上的SiO2层上。在25°C至350°C的不同温度下评估了所制造器件的传输特性。发现SiC NWFET器件在施加150°C的温度后表现出电导增加(从0.43 mS到1.2 mS),然后随着温度增加到350°C,电导降低(从1.2 mS到0.3 mS)。电导的增加可归因于热离子发射和隧穿机制,而电导的降低可归因于声子散射。此外,该器件显示出高的电子和空穴迁移率,以及在室温和高温下非常低的电阻率值。原创性/价值3C SiC纳米线的高温传输特性(超过300°C)尚未报道。SiC NWFET表现出高跨导、高电子和空穴迁移率、非常低的电阻率以及在高温下的良好稳定性。因此,这项研究不仅可以为高功率电路提供解决方案,还可以为高温环境(~350°C)中的低功率电路和传感应用提供解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics International
Microelectronics International 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
28
审稿时长
>12 weeks
期刊介绍: Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details. Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are: • Advanced packaging • Ceramics • Chip attachment • Chip on board (COB) • Chip scale packaging • Flexible substrates • MEMS • Micro-circuit technology • Microelectronic materials • Multichip modules (MCMs) • Organic/polymer electronics • Printed electronics • Semiconductor technology • Solid state sensors • Thermal management • Thick/thin film technology • Wafer scale processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信