Effect of Intermittent Injection of Ar/CH4 Quenching Gas on Particle Composition and Size of Si/C Nanoparticles Synthesized by Modulated Induction Thermal Plasma
Keita Akashi, Yasunori Tanaka, Y. Nakano, R. Furukawa, T. Ishijima, S. Sueyasu, S. Watanabe, K. Nakamura
{"title":"Effect of Intermittent Injection of Ar/CH4 Quenching Gas on Particle Composition and Size of Si/C Nanoparticles Synthesized by Modulated Induction Thermal Plasma","authors":"Keita Akashi, Yasunori Tanaka, Y. Nakano, R. Furukawa, T. Ishijima, S. Sueyasu, S. Watanabe, K. Nakamura","doi":"10.1007/s11090-021-10169-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes effects of intermittent Ar/CH<sub>4</sub> quenching gas (QG) injection on the size and composition of Si/C nanoparticles synthesized using pulse-modulated induction thermal plasma (PMITP). Time-controlled feeding of feedstock (TCFF), with synchronous and intermittent injection of silicon feedstock powder to the PMITP, was used for high-rate production of Si nanoparticles. Also, Ar QG was supplied intermittently from the chamber wall to enhance the cooling effect further. The QG also included CH<sub>4</sub> as a carbon source gas for Si/C nanoparticle synthesis. Intermittent QG injection timing was studied for the composition of Si/C nanoparticles. The synthesized particles were analysed using FE-SEM, XRD, TEM, EDS, and Raman spectroscopy. Furthermore, numerical thermofluid simulation was also conducted to obtain the time varying temperature distribution in the reaction chamber, considering intermittent QG injection. From this numerical calculation, the dependence of the minimum temperature on the QG injection timing was found. The above experimental and numerical results indicate that carbon-coated Si nanoparticles can be synthesized when QG is injected at appropriate timing into the PMITP with temperatures of 1000–2000 K.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"41 4","pages":"1121 - 1147"},"PeriodicalIF":2.5000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11090-021-10169-4","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-021-10169-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 6
Abstract
This paper describes effects of intermittent Ar/CH4 quenching gas (QG) injection on the size and composition of Si/C nanoparticles synthesized using pulse-modulated induction thermal plasma (PMITP). Time-controlled feeding of feedstock (TCFF), with synchronous and intermittent injection of silicon feedstock powder to the PMITP, was used for high-rate production of Si nanoparticles. Also, Ar QG was supplied intermittently from the chamber wall to enhance the cooling effect further. The QG also included CH4 as a carbon source gas for Si/C nanoparticle synthesis. Intermittent QG injection timing was studied for the composition of Si/C nanoparticles. The synthesized particles were analysed using FE-SEM, XRD, TEM, EDS, and Raman spectroscopy. Furthermore, numerical thermofluid simulation was also conducted to obtain the time varying temperature distribution in the reaction chamber, considering intermittent QG injection. From this numerical calculation, the dependence of the minimum temperature on the QG injection timing was found. The above experimental and numerical results indicate that carbon-coated Si nanoparticles can be synthesized when QG is injected at appropriate timing into the PMITP with temperatures of 1000–2000 K.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.