Unripe Carica papaya Fresh Fruit Extract Protects against Methylglyoxal-Mediated Aging in Human Dermal Skin Fibroblasts.

IF 1.6 Q3 FOOD SCIENCE & TECHNOLOGY
Suvara K Wattanapitayakul, Wattanased Jarisarapurin, Khwandow Kunchana, Vasun Setthawong, Linda Chularojmontri
{"title":"Unripe <i>Carica papaya</i> Fresh Fruit Extract Protects against Methylglyoxal-Mediated Aging in Human Dermal Skin Fibroblasts.","authors":"Suvara K Wattanapitayakul,&nbsp;Wattanased Jarisarapurin,&nbsp;Khwandow Kunchana,&nbsp;Vasun Setthawong,&nbsp;Linda Chularojmontri","doi":"10.3746/pnf.2023.28.3.235","DOIUrl":null,"url":null,"abstract":"<p><p>The glycolytic metabolite methylglyoxal (MGO) initiates the formation of advanced glycation end products and oxidative stress, leading to cellular senescence and skin aging. This study focuses on the anti-aging properties of unripe <i>Carica papaya</i> L. (UCP) fresh fruit extract on MGO-induced human dermal fibroblast senescence. We pretreated human foreskin fibroblasts with UCP before incubating them with MGO (400 μM) for 72 h. We used the glycation inhibitor aminoguanidine hydrochloride (AG) as the positive control. Senescent fibroblasts were detected using senescence-associated beta-galactosidase activity and collagen type I expression (COL1A1). We investigated the changes in the Akt, JNK/p38 mitogen-activated protein kinase (MAPK), c-Jun, and nuclear factor kappa B (NF-κB) signaling pathways using Western blotting. UCP significantly suppressed MGO-induced senescent fibroblasts (from 20.90±2.00% to 11.78±2.04%) when compared with the baseline level at 7.10±0.90% (<i>P</i><0.05). While COL1A1 was diminished by 43.35±1.56% (<i>P</i><0.001) in the MGO-treated fibroblasts, UCP and AG could recover COL1A1 to 63.22±4.78% and 64.39±3.34%, respectively. MGO triggered overactivation of Akt, JNK/p38 MAPK, c-Jun, and NF-κB by 2.10±0.09, 8.10±0.37, 6.60±0.29, 2.18±0.23, and 3.74±0.37 folds, respectively. UCP and AG significantly abolished these changes. Consistently, MGO increased matrix metalloproteinase-1 (MMP-1) levels by 2.58±0.04 folds, which was significantly suppressed by UCP and AG pretreatment to 1.87±0.11 and 1.69±0.07 folds, respectively. In summary, UCP controlled MGO-induced fibroblast senescence by suppressing the JNK/c-Jun/MMP and p38/NF-κB/COL1A1 pathways, similar to the action of the glycation inhibitor AG. Therefore, UCP can be considered a functional fruit for preventing and delaying skin aging.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/19/pnfs-28-3-235.PMC10567595.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive Nutrition and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/pnf.2023.28.3.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The glycolytic metabolite methylglyoxal (MGO) initiates the formation of advanced glycation end products and oxidative stress, leading to cellular senescence and skin aging. This study focuses on the anti-aging properties of unripe Carica papaya L. (UCP) fresh fruit extract on MGO-induced human dermal fibroblast senescence. We pretreated human foreskin fibroblasts with UCP before incubating them with MGO (400 μM) for 72 h. We used the glycation inhibitor aminoguanidine hydrochloride (AG) as the positive control. Senescent fibroblasts were detected using senescence-associated beta-galactosidase activity and collagen type I expression (COL1A1). We investigated the changes in the Akt, JNK/p38 mitogen-activated protein kinase (MAPK), c-Jun, and nuclear factor kappa B (NF-κB) signaling pathways using Western blotting. UCP significantly suppressed MGO-induced senescent fibroblasts (from 20.90±2.00% to 11.78±2.04%) when compared with the baseline level at 7.10±0.90% (P<0.05). While COL1A1 was diminished by 43.35±1.56% (P<0.001) in the MGO-treated fibroblasts, UCP and AG could recover COL1A1 to 63.22±4.78% and 64.39±3.34%, respectively. MGO triggered overactivation of Akt, JNK/p38 MAPK, c-Jun, and NF-κB by 2.10±0.09, 8.10±0.37, 6.60±0.29, 2.18±0.23, and 3.74±0.37 folds, respectively. UCP and AG significantly abolished these changes. Consistently, MGO increased matrix metalloproteinase-1 (MMP-1) levels by 2.58±0.04 folds, which was significantly suppressed by UCP and AG pretreatment to 1.87±0.11 and 1.69±0.07 folds, respectively. In summary, UCP controlled MGO-induced fibroblast senescence by suppressing the JNK/c-Jun/MMP and p38/NF-κB/COL1A1 pathways, similar to the action of the glycation inhibitor AG. Therefore, UCP can be considered a functional fruit for preventing and delaying skin aging.

Abstract Image

Abstract Image

Abstract Image

未成熟的番木瓜鲜果提取物对人皮肤成纤维细胞中甲基乙二醛介导的衰老具有保护作用。
糖酵解代谢产物甲基乙二醛(MGO)启动晚期糖基化终产物的形成和氧化应激,导致细胞衰老和皮肤衰老。本研究主要研究未成熟番木瓜鲜果提取物对MGO诱导的人真皮成纤维细胞衰老的抗衰老作用。我们用UCP预处理人包皮成纤维细胞,然后用MGO(400μM)孵育72小时。我们使用糖化抑制剂氨基胍盐酸盐(AG)作为阳性对照。使用衰老相关的β-半乳糖苷酶活性和I型胶原表达(COL1A1)检测衰老成纤维细胞。我们使用蛋白质印迹研究了Akt、JNK/p38丝裂原活化蛋白激酶(MAPK)、c-Jun和核因子κB(NF-κB)信号通路的变化。与7.10±0.90%的基线水平相比,UCP显著抑制MGO诱导的衰老成纤维细胞(从20.90±2.00%到11.78±2.04%)(PP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Preventive Nutrition and Food Science
Preventive Nutrition and Food Science Agricultural and Biological Sciences-Food Science
CiteScore
3.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信