Analysis of Microgap Electrostatic Discharge Parameters With Algorithms of Neural Network and Wavelet Transform

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Fangming Ruan;Kai Xu;Yang Meng;Wenli Wang;Sheng Guan;Kui Zhou;Cheng Yang;Yanli Chen
{"title":"Analysis of Microgap Electrostatic Discharge Parameters With Algorithms of Neural Network and Wavelet Transform","authors":"Fangming Ruan;Kai Xu;Yang Meng;Wenli Wang;Sheng Guan;Kui Zhou;Cheng Yang;Yanli Chen","doi":"10.1109/TPS.2023.3298800","DOIUrl":null,"url":null,"abstract":"Special relationship exists between environmental conditions and discharge characteristic parameters in microgap electrostatic discharge (ESD) events. Potential relations between input and output of neural network can be explored if taken discharge environmental factors as neural network input. The characteristic parameters of discharge results are affected by environmental conditions, and hence, discharge parameters can be described with an output of neural network. Circumstances factors effect on discharge parameters in microgap ESD result was analyzed with two algorithms of neural network wavelet transform combined with Kalman filter. Nonlinear relationship between circumstances conditions and discharge result effect was a feature in microgap ESD events. Strong positive relationship existed between discharge parameters and circumstances factors of electrode moving speed, gas pressure, and temperature. Characteristic parameters measured in real ESD experiment were compared to predictive parameters of calculation result from neural network algorithm. The analysis of accuracies was given on the prediction of discharge process trend compared to discharge current data measured in experiment. Noise in discharge current waveforms can be suppressed effectively with the method of wavelet transform combined with Kalman filter.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"51 9","pages":"2602-2607"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10235296/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Special relationship exists between environmental conditions and discharge characteristic parameters in microgap electrostatic discharge (ESD) events. Potential relations between input and output of neural network can be explored if taken discharge environmental factors as neural network input. The characteristic parameters of discharge results are affected by environmental conditions, and hence, discharge parameters can be described with an output of neural network. Circumstances factors effect on discharge parameters in microgap ESD result was analyzed with two algorithms of neural network wavelet transform combined with Kalman filter. Nonlinear relationship between circumstances conditions and discharge result effect was a feature in microgap ESD events. Strong positive relationship existed between discharge parameters and circumstances factors of electrode moving speed, gas pressure, and temperature. Characteristic parameters measured in real ESD experiment were compared to predictive parameters of calculation result from neural network algorithm. The analysis of accuracies was given on the prediction of discharge process trend compared to discharge current data measured in experiment. Noise in discharge current waveforms can be suppressed effectively with the method of wavelet transform combined with Kalman filter.
用神经网络和小波变换算法分析微间隙静电放电参数
在微电网静电放电(ESD)事件中,环境条件和放电特性参数之间存在着特殊的关系。以排放环境因素为神经网络输入,可以探索神经网络输入和输出之间的潜在关系。放电结果的特征参数受环境条件的影响,因此,可以用神经网络的输出来描述放电参数。采用神经网络小波变换和卡尔曼滤波器相结合的两种算法,分析了环境因素对微电网ESD结果中放电参数的影响。环境条件和放电结果效应之间的非线性关系是微电网ESD事件的一个特征。放电参数与电极移动速度、气体压力、温度等环境因素之间存在较强的正相关关系。将实际ESD实验中测得的特征参数与神经网络算法计算结果的预测参数进行了比较。与实验测量的放电电流数据相比,对放电过程趋势的预测精度进行了分析。小波变换与卡尔曼滤波器相结合的方法可以有效地抑制放电电流波形中的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信