{"title":"TEST FOR HIGH DIMENSIONAL CORRELATION MATRICES.","authors":"Shurong Zheng, Guanghui Cheng, Jianhua Guo, Hongtu Zhu","doi":"10.1214/18-AOS1768","DOIUrl":null,"url":null,"abstract":"<p><p>Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one-, two-, and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function, and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the non-independency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"47 5","pages":"2887-2921"},"PeriodicalIF":3.2000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOS1768","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOS1768","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 18
Abstract
Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one-, two-, and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function, and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the non-independency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.