Jincheng Zhang, Li Liang, Yimeng Shan, Xuewei Zhou, Baoguo Sun, Yuan Liu and Yuyu Zhang*,
{"title":"Antihypertensive Effect, ACE Inhibitory Activity, and Stability of Umami Peptides from Yeast Extract","authors":"Jincheng Zhang, Li Liang, Yimeng Shan, Xuewei Zhou, Baoguo Sun, Yuan Liu and Yuyu Zhang*, ","doi":"10.1021/acs.jafc.3c04819","DOIUrl":null,"url":null,"abstract":"<p >Bioactive peptides from foods have garnered considerable attention as viable supplements for hypertensive patients. Herein, the antihypertensive effect and mechanism of umami peptides from yeast extract were investigated based on the pharmacophore model, simulated digestion, spontaneously hypertensive rat (SHR) model, and molecular docking. Notably, umami peptide LLLLPKP exhibited favorable angiotensin I-converting enzyme (ACE) inhibitory activity (IC<sub>50</sub> = 10.22 μM) in vitro and regulated blood pressure in the SHR model with excellent durability. Remarkably, LLLLPKP showed the highest Fitvalue (4.022) of the pharmacophore model, indicating its similar pharmacological effects as ACE inhibitors. During the simulated gastrointestinal digestion, the ACE inhibition rate of LLLLPKP was merely reduced by 5.89%, but it was enzymatically cleaved into 14 peptide segments. The C-terminal sequence comprising L (4), P (5), K (6), and P (7) exhibited robust stability and a notable presence within the peptide segments postdigestion. Meanwhile, according to molecular docking, these four residues within LLLLPKP were responsible for all interactions with key sites within active pockets S1 and S2 and the active pocket of Zn<sup>2+</sup>. In light of these findings, LLLLPKP is a highly promising antihypertensive peptide. Developing this umami peptide with antihypertensive effects holds substantial importance for the long-term treatment of hypertension.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"71 45","pages":"17263–17272"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.3c04819","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioactive peptides from foods have garnered considerable attention as viable supplements for hypertensive patients. Herein, the antihypertensive effect and mechanism of umami peptides from yeast extract were investigated based on the pharmacophore model, simulated digestion, spontaneously hypertensive rat (SHR) model, and molecular docking. Notably, umami peptide LLLLPKP exhibited favorable angiotensin I-converting enzyme (ACE) inhibitory activity (IC50 = 10.22 μM) in vitro and regulated blood pressure in the SHR model with excellent durability. Remarkably, LLLLPKP showed the highest Fitvalue (4.022) of the pharmacophore model, indicating its similar pharmacological effects as ACE inhibitors. During the simulated gastrointestinal digestion, the ACE inhibition rate of LLLLPKP was merely reduced by 5.89%, but it was enzymatically cleaved into 14 peptide segments. The C-terminal sequence comprising L (4), P (5), K (6), and P (7) exhibited robust stability and a notable presence within the peptide segments postdigestion. Meanwhile, according to molecular docking, these four residues within LLLLPKP were responsible for all interactions with key sites within active pockets S1 and S2 and the active pocket of Zn2+. In light of these findings, LLLLPKP is a highly promising antihypertensive peptide. Developing this umami peptide with antihypertensive effects holds substantial importance for the long-term treatment of hypertension.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.