Behnaz Ahrabi, Hojjat Allah Abbaszadeh, Abbas Piryaei, Faezeh Shekari, Navid Ahmady Roozbahany, Mahya Rouhollahi, Forough Azam Sayahpour, Mahnaz Ahrabi, Hadi Azimi, Reza Moghadasali
{"title":"Autophagy-induced mesenchymal stem cell-derived extracellular vesicles ameliorated renal fibrosis in an <i>in vitro</i> model.","authors":"Behnaz Ahrabi, Hojjat Allah Abbaszadeh, Abbas Piryaei, Faezeh Shekari, Navid Ahmady Roozbahany, Mahya Rouhollahi, Forough Azam Sayahpour, Mahnaz Ahrabi, Hadi Azimi, Reza Moghadasali","doi":"10.34172/bi.2022.24256","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Chronic and progressive damage to the kidney by inflammatory processes, may lead to an increase in the extracellular matrix production, a condition known as renal fibrosis. The current study aims to evaluate if the extracellular vesicles (EVs) derived from autophagic adipose-derived mesenchymal stem cells (ADMSCs) can reduce the inflammation and extracellular matrix accumulation in damaged kidney tissue.</p><p><strong>Methods: </strong>Autophagy was induced in ADMSCs using 2µM concentration curcumin and was confirmed by evaluating LC3B, ATG7, and Beclin1 using real-time polymerase chain reaction (PCR) and Western blot. An in vitro renal fibrotic model was established in HEK-293 cells exposed to H2O2 (0.8mM) for 24 and 72 hours. The fibrotic model was confirmed through evaluation of collagen I, transforming growth factor-beta 1 (TGF-β1), E-cadherin, and vimentin genes expression using real-time PCR, collagen I protein by ELISA. After induction of fibrosis for 24 and 72 hours, the HEK cells were treated with NEVs (non-autophagy EVs) (50µM) or AEVs (autophagy EVs) (50µM) at 48, 96, and 124 hours, and then the samples were collected at 72 and 148 hours. Expression of collagen I, TGF-β1, E-cadherin, and vimentin Genes was evaluated via RT-PCR, and protein levels of IL1, TNF-α, IL4, IL10 using ELISA.</p><p><strong>Results: </strong>Induction of autophagy using curcumin (2µM) for 24 hours significantly increased LC3B, Beclin1, and ATG7 in the ADMSCs. Upregulation in anti-fibrotic (E-cadherin) and anti-inflammatory (IL4, IL10) gene expression was significantly different in the fibrotic model treated by AEVs compared to NEVs. Also, the downregulation of fibrotic (TGF-β1, vimentin, collagen I) and pro-inflammatory (IL1, TNFα) gene expression was significantly different in AEVs compared with those treated by NEVs.</p><p><strong>Conclusion: </strong>Our findings suggest that AEVs can be considered as a therapeutic modality for renal fibrosis in the future.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/3d/bi-13-359.PMC10509741.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2022.24256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Chronic and progressive damage to the kidney by inflammatory processes, may lead to an increase in the extracellular matrix production, a condition known as renal fibrosis. The current study aims to evaluate if the extracellular vesicles (EVs) derived from autophagic adipose-derived mesenchymal stem cells (ADMSCs) can reduce the inflammation and extracellular matrix accumulation in damaged kidney tissue.
Methods: Autophagy was induced in ADMSCs using 2µM concentration curcumin and was confirmed by evaluating LC3B, ATG7, and Beclin1 using real-time polymerase chain reaction (PCR) and Western blot. An in vitro renal fibrotic model was established in HEK-293 cells exposed to H2O2 (0.8mM) for 24 and 72 hours. The fibrotic model was confirmed through evaluation of collagen I, transforming growth factor-beta 1 (TGF-β1), E-cadherin, and vimentin genes expression using real-time PCR, collagen I protein by ELISA. After induction of fibrosis for 24 and 72 hours, the HEK cells were treated with NEVs (non-autophagy EVs) (50µM) or AEVs (autophagy EVs) (50µM) at 48, 96, and 124 hours, and then the samples were collected at 72 and 148 hours. Expression of collagen I, TGF-β1, E-cadherin, and vimentin Genes was evaluated via RT-PCR, and protein levels of IL1, TNF-α, IL4, IL10 using ELISA.
Results: Induction of autophagy using curcumin (2µM) for 24 hours significantly increased LC3B, Beclin1, and ATG7 in the ADMSCs. Upregulation in anti-fibrotic (E-cadherin) and anti-inflammatory (IL4, IL10) gene expression was significantly different in the fibrotic model treated by AEVs compared to NEVs. Also, the downregulation of fibrotic (TGF-β1, vimentin, collagen I) and pro-inflammatory (IL1, TNFα) gene expression was significantly different in AEVs compared with those treated by NEVs.
Conclusion: Our findings suggest that AEVs can be considered as a therapeutic modality for renal fibrosis in the future.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.