{"title":"Application of optimized LSTM in prediction of the cumulative confirmed cases of COVID-19.","authors":"M He, W W Zhu, H Z Chen, Hongbing Zhu","doi":"10.1080/10255842.2023.2264438","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an optimized Long Short-Term Memory (LSTM+) model for predicting cumulative confirmed cases of COVID-19 in Germany, the UK, Italy, and Japan. The LSTM+ model incorporates two key optimizations: (1) fine-adjustment of parameters and (2) a 're-prediction' process that utilizes the latest prediction results from the previous iteration. The performance of the LSTM+ model is evaluated and compared with that of Backpropagation (BP) and traditional LSTM models. The results demonstrate that the LSTM+ model significantly outperforms both BP and LSTM models, achieving a Mean Absolute Percentage Error (MAPE) of less than 0.6%. Additionally, two illustrative examples employing the LSTM+ model further validate its general applicability and practical performance for predicting cumulative confirmed COVID-19 cases.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2264438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an optimized Long Short-Term Memory (LSTM+) model for predicting cumulative confirmed cases of COVID-19 in Germany, the UK, Italy, and Japan. The LSTM+ model incorporates two key optimizations: (1) fine-adjustment of parameters and (2) a 're-prediction' process that utilizes the latest prediction results from the previous iteration. The performance of the LSTM+ model is evaluated and compared with that of Backpropagation (BP) and traditional LSTM models. The results demonstrate that the LSTM+ model significantly outperforms both BP and LSTM models, achieving a Mean Absolute Percentage Error (MAPE) of less than 0.6%. Additionally, two illustrative examples employing the LSTM+ model further validate its general applicability and practical performance for predicting cumulative confirmed COVID-19 cases.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.