Application of optimized LSTM in prediction of the cumulative confirmed cases of COVID-19.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M He, W W Zhu, H Z Chen, Hongbing Zhu
{"title":"Application of optimized LSTM in prediction of the cumulative confirmed cases of COVID-19.","authors":"M He, W W Zhu, H Z Chen, Hongbing Zhu","doi":"10.1080/10255842.2023.2264438","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an optimized Long Short-Term Memory (LSTM+) model for predicting cumulative confirmed cases of COVID-19 in Germany, the UK, Italy, and Japan. The LSTM+ model incorporates two key optimizations: (1) fine-adjustment of parameters and (2) a 're-prediction' process that utilizes the latest prediction results from the previous iteration. The performance of the LSTM+ model is evaluated and compared with that of Backpropagation (BP) and traditional LSTM models. The results demonstrate that the LSTM+ model significantly outperforms both BP and LSTM models, achieving a Mean Absolute Percentage Error (MAPE) of less than 0.6%. Additionally, two illustrative examples employing the LSTM+ model further validate its general applicability and practical performance for predicting cumulative confirmed COVID-19 cases.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2264438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an optimized Long Short-Term Memory (LSTM+) model for predicting cumulative confirmed cases of COVID-19 in Germany, the UK, Italy, and Japan. The LSTM+ model incorporates two key optimizations: (1) fine-adjustment of parameters and (2) a 're-prediction' process that utilizes the latest prediction results from the previous iteration. The performance of the LSTM+ model is evaluated and compared with that of Backpropagation (BP) and traditional LSTM models. The results demonstrate that the LSTM+ model significantly outperforms both BP and LSTM models, achieving a Mean Absolute Percentage Error (MAPE) of less than 0.6%. Additionally, two illustrative examples employing the LSTM+ model further validate its general applicability and practical performance for predicting cumulative confirmed COVID-19 cases.

优化LSTM在新冠肺炎累计确诊病例预测中的应用。
本文提出了一种优化的长短期记忆(LSTM+)模型,用于预测德国、英国、意大利和日本的新冠肺炎累计确诊病例。LSTM+模型包含两个关键优化:(1)参数的微调和(2)利用上一次迭代的最新预测结果的“重新预测”过程。评估了LSTM+模型的性能,并与反向传播(BP)和传统LSTM模型的性能进行了比较。结果表明,LSTM+模型显著优于BP和LSTM模型,平均绝对百分比误差(MAPE)小于0.6%。此外,使用LSTM+的两个示例进一步验证了其在预测累计确诊新冠肺炎病例方面的普遍适用性和实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信