{"title":"A decentralized public-permissioned blockchain framework for enhanced security of health records in fog computing.","authors":"Ramaiah Challa, Kiran Kumar Kothamasu","doi":"10.1080/10255842.2023.2262664","DOIUrl":null,"url":null,"abstract":"<p><p>Medical health records comprise sensitive patient data for precise diagnosis and successive treatment. However, it must be stored and shared securely to protect data privacy. Generally, health records are kept on centralized servers, which raise the risk of security breaches and involve trust in a single authority that cannot efficiently defend data from internal attacks. Blockchain (BC) is extensively used in medical health records management because of its decentralized and tamper-proof properties. This work introduces a public-permissioned BC technology with a decentralized ledger (DL) to manage medical health records in the fog computing layer. The considered BC is decentralized and allows the transmission of records within the decentralized network of records. The data blocks are hashed using the SHA-256 hash algorithm. Especially, an Adaptive RSA Digital Signature Algorithm (ARSA-DS) is developed to prevent data tampering with medical health records in the fog computing layer. Moreover, an Ebola Search Optimization based Key Selection (ESO-KS) technique is employed to find the ideal key from the randomly generated keys to reduce processing time and increase overall efficiency. The proposed decentralized BC framework will help to preserve patient privacy and prevent the tampering of health records by attacks; moreover, it is efficient in terms of confidentiality, integrity, and availability.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2262664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Medical health records comprise sensitive patient data for precise diagnosis and successive treatment. However, it must be stored and shared securely to protect data privacy. Generally, health records are kept on centralized servers, which raise the risk of security breaches and involve trust in a single authority that cannot efficiently defend data from internal attacks. Blockchain (BC) is extensively used in medical health records management because of its decentralized and tamper-proof properties. This work introduces a public-permissioned BC technology with a decentralized ledger (DL) to manage medical health records in the fog computing layer. The considered BC is decentralized and allows the transmission of records within the decentralized network of records. The data blocks are hashed using the SHA-256 hash algorithm. Especially, an Adaptive RSA Digital Signature Algorithm (ARSA-DS) is developed to prevent data tampering with medical health records in the fog computing layer. Moreover, an Ebola Search Optimization based Key Selection (ESO-KS) technique is employed to find the ideal key from the randomly generated keys to reduce processing time and increase overall efficiency. The proposed decentralized BC framework will help to preserve patient privacy and prevent the tampering of health records by attacks; moreover, it is efficient in terms of confidentiality, integrity, and availability.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.