Impact of organic fertilization by the digestate from by-product on growth, yield and fruit quality of tomato (Solanum lycopersicon) and soil properties under greenhouse and field conditions
{"title":"Impact of organic fertilization by the digestate from by-product on growth, yield and fruit quality of tomato (Solanum lycopersicon) and soil properties under greenhouse and field conditions","authors":"Faqinwei Li, Yongheng Yuan, Naoto Shimizu, Jorge Magaña, Pengxuan Gong, Risu Na","doi":"10.1186/s40538-023-00448-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The application of organic fertilizer is a sustainable approach to maintain soil fertility in agricultural crop production. In contrast to other organic fertilizers, the digestate from by-products of anaerobic digestion has not been well characterized in terms of its agronomic properties. In this study, different fertilization treatments were investigated to evaluate their impacts on growth, yield and fruit quality of tomatoes and on soil properties under greenhouse and field conditions. The experiments comprised a control (unfertilized) and three treatments with the same nitrogen dose: chemical fertilizer, digestate from by-product (organic fertilizer) and digestate combined with chemical fertilizer.</p><h3>Results</h3><p>The results showed that the application of digestate significantly increased the growth and fruit quality of tomato including height, stem diameter, leaf chlorophyll content index, and photosynthetic rate of tomato plant and sugar–acid ratio, protein content, and ascorbic acid content of the fruit. The nitrate contents in tomato fruit were lower in the digestate treatment and digestate combined with chemical fertilizer treatment than in the chemical fertilizer. The digestate combined with chemical fertilization resulted in the greatest increase in tomato yield, up to 26.29% and 10.78% higher than that in the chemical fertilizer treatment under field and greenhouse conditions, respectively. Moreover, fertilization with digestate treatment and digestate combined with chemical fertilizer treatment increased soil fertility, including soil nitrogen and carbon contents, and enhanced soil enzyme activities under both field and greenhouse conditions. In addition, the growth, yield, and fruit quality of tomato were significantly correlated with soil chemical characteristics and soil enzyme activities.</p><h3>Conclusions</h3><p>The effects of digestate treatments to maintain a stable tomato yield and improve fruit quality may be due to the enhanced soil enzymatic activities and chemical properties. These results suggest that the use of digestate as a full or partial replacement for chemical fertilizer could improve the growth and fruit quality of tomato, maintain the yield, and reduce the use of inorganic fertilizers in tomato production.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"10 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00448-x","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-023-00448-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Background
The application of organic fertilizer is a sustainable approach to maintain soil fertility in agricultural crop production. In contrast to other organic fertilizers, the digestate from by-products of anaerobic digestion has not been well characterized in terms of its agronomic properties. In this study, different fertilization treatments were investigated to evaluate their impacts on growth, yield and fruit quality of tomatoes and on soil properties under greenhouse and field conditions. The experiments comprised a control (unfertilized) and three treatments with the same nitrogen dose: chemical fertilizer, digestate from by-product (organic fertilizer) and digestate combined with chemical fertilizer.
Results
The results showed that the application of digestate significantly increased the growth and fruit quality of tomato including height, stem diameter, leaf chlorophyll content index, and photosynthetic rate of tomato plant and sugar–acid ratio, protein content, and ascorbic acid content of the fruit. The nitrate contents in tomato fruit were lower in the digestate treatment and digestate combined with chemical fertilizer treatment than in the chemical fertilizer. The digestate combined with chemical fertilization resulted in the greatest increase in tomato yield, up to 26.29% and 10.78% higher than that in the chemical fertilizer treatment under field and greenhouse conditions, respectively. Moreover, fertilization with digestate treatment and digestate combined with chemical fertilizer treatment increased soil fertility, including soil nitrogen and carbon contents, and enhanced soil enzyme activities under both field and greenhouse conditions. In addition, the growth, yield, and fruit quality of tomato were significantly correlated with soil chemical characteristics and soil enzyme activities.
Conclusions
The effects of digestate treatments to maintain a stable tomato yield and improve fruit quality may be due to the enhanced soil enzymatic activities and chemical properties. These results suggest that the use of digestate as a full or partial replacement for chemical fertilizer could improve the growth and fruit quality of tomato, maintain the yield, and reduce the use of inorganic fertilizers in tomato production.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.