Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?

IF 7.7 2区 医学 Q1 ONCOLOGY
Cancer and Metastasis Reviews Pub Date : 2024-03-01 Epub Date: 2023-10-05 DOI:10.1007/s10555-023-10144-9
Homa Fatma, Hifzur R Siddique
{"title":"Cancer cell plasticity, stem cell factors, and therapy resistance: how are they linked?","authors":"Homa Fatma, Hifzur R Siddique","doi":"10.1007/s10555-023-10144-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":" ","pages":"423-440"},"PeriodicalIF":7.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer and Metastasis Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10555-023-10144-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular plasticity can occur naturally in an organism and is considered an adapting mechanism during the developmental stage. However, abnormal cellular plasticity is observed in different diseased conditions, including cancer. Cancer cell plasticity triggers the stimuli of epithelial-mesenchymal transition (EMT), abnormal epigenetic changes, expression of stem cell factors and implicated signaling pathways, etc., and helps in the maintenance of CSC phenotype. Conversely, CSC maintains the cancer cell plasticity, EMT, and epigenetic plasticity. EMT contributes to increased cell migration and greater diversity within tumors, while epigenetic changes, stem cell factors (OCT4, NANOG, and SOX2), and various signaling pathways allow cancer cells to maintain various phenotypes, giving rise to intra- and inter-tumoral heterogeneity. The intricate relationships between cancer cell plasticity and stem cell factors help the tumor cells adopt drug-tolerant states, evade senescence, and successfully acquire drug resistance with treatment dismissal. Inhibiting molecules/signaling pathways involved in promoting CSCs, cellular plasticity, EMT, and epigenetic plasticity might be helpful for successful cancer therapy management. This review discussed the role of cellular plasticity, EMT, and stem cell factors in tumor initiation, progression, reprogramming, and therapy resistance. Finally, we discussed how the intervention in this axis will help better manage cancers and improve patient survivability.

Abstract Image

癌症细胞可塑性、干细胞因子和治疗耐药性:它们是如何联系的?
细胞可塑性可以在生物体内自然发生,并被认为是发育阶段的一种适应机制。然而,在包括癌症在内的不同疾病条件下观察到异常的细胞可塑性。癌症细胞可塑性触发上皮-间充质转化(EMT)、异常表观遗传变化、干细胞因子表达和相关信号通路等刺激,并有助于维持CSC表型。相反,CSC维持癌症细胞的可塑性、EMT和表观遗传学可塑性。EMT有助于增加肿瘤内的细胞迁移和更大的多样性,而表观遗传变化、干细胞因子(OCT4、NANOG和SOX2)和各种信号通路使癌症细胞维持各种表型,从而导致肿瘤内和肿瘤间的异质性。癌症细胞可塑性与干细胞因子之间的复杂关系有助于肿瘤细胞进入药物耐受状态,避免衰老,并成功获得药物耐药性。抑制参与促进CSC、细胞可塑性、EMT和表观遗传学可塑性的分子/信号通路可能有助于癌症治疗管理的成功。这篇综述讨论了细胞可塑性、EMT和干细胞因子在肿瘤发生、发展、重编程和耐药性中的作用。最后,我们讨论了该轴的干预将如何帮助更好地管理癌症并提高患者的生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.00
自引率
0.00%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Contemporary biomedical research is on the threshold of an era in which physiological and pathological processes can be analyzed in increasingly precise and mechanistic terms.The transformation of biology from a largely descriptive, phenomenological discipline to one in which the regulatory principles can be understood and manipulated with predictability brings a new dimension to the study of cancer and the search for effective therapeutic modalities for this disease. Cancer and Metastasis Reviews provides a forum for critical review and discussion of these challenging developments. A major function of the journal is to review some of the more important and interesting recent developments in the biology and treatment of malignant disease, as well as to highlight new and promising directions, be they technological or conceptual. Contributors are encouraged to review their personal work and be speculative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信