Shaghayegh Ahmadi, Mohammad Hasanzadeh, Zahra Ghasempour
{"title":"Sub-micro electrochemical recognition of carmoisine, sunset yellow, and tartrazine in fruit juices using P(β-CD/Arg)/CysA-AuNPs/AuE.","authors":"Shaghayegh Ahmadi, Mohammad Hasanzadeh, Zahra Ghasempour","doi":"10.1016/j.foodchem.2022.134501","DOIUrl":null,"url":null,"abstract":"<p><p>An electrochemical sensor was designed to identify food colorants in juices. A green polymeric nanocomposite (beta-cyclodextrin/arginine) decorated with gold nanoparticles-capped cysteamine was fabricated on the surface of gold electrodes. Field emission-SEM and energy-dispersive X-ray spectroscopy showed the morphology and the presence of all elements related to all stages of the electrode modification. For three azo dyes (carmoisine, sunset yellow, and tartrazine), the analytical linear range was 10<sup>-</sup><sup>8</sup> to 10<sup>-</sup><sup>4</sup> M, with a low limit of quantification of about 1 nM. The engineered chemosensor showed suitable selectivity for analyzing candidate dyes in the presence of interfering agents. According to the scan rate results, the mass transport was controlled by diffusion, and the reaction on the chemosensor was electrochemically quasi-reversible. The results for different fruit juices confirmed this method's high potential application in detecting artificial color adulteration in food products.</p>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"402 ","pages":"134501"},"PeriodicalIF":8.5000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2022.134501","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
An electrochemical sensor was designed to identify food colorants in juices. A green polymeric nanocomposite (beta-cyclodextrin/arginine) decorated with gold nanoparticles-capped cysteamine was fabricated on the surface of gold electrodes. Field emission-SEM and energy-dispersive X-ray spectroscopy showed the morphology and the presence of all elements related to all stages of the electrode modification. For three azo dyes (carmoisine, sunset yellow, and tartrazine), the analytical linear range was 10-8 to 10-4 M, with a low limit of quantification of about 1 nM. The engineered chemosensor showed suitable selectivity for analyzing candidate dyes in the presence of interfering agents. According to the scan rate results, the mass transport was controlled by diffusion, and the reaction on the chemosensor was electrochemically quasi-reversible. The results for different fruit juices confirmed this method's high potential application in detecting artificial color adulteration in food products.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.