{"title":"Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley","authors":"La Geng , Xinyi He , Lingzhen Ye , Guoping Zhang","doi":"10.1016/j.fochms.2022.100136","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of β-glucan in barley grains is one of its important quality traits. Lower β-glucan content is required for the barley used in beer and feed production, while higher β-glucan content is beneficial for food barley. Although intensive research has been carried out on the genotypic and environmental differences in β-glucan content in barley grains, little information is available on the molecular mechanisms underlying their genotypic differences and genetic regulation of β-glucan synthesis and accumulation. In this study, RNA sequencing analysis was conducted to compare the transcriptome profiles of two barley genotypes (BCS192 and BCS297) that greatly differ in grain β-glucan content, in order to identify the key genes responsible for β-glucan synthesis and accumulation during grain development. The results showed that carbohydrate metabolic processes and starch and sucrose metabolism play significant roles in β-glucan synthesis. The identified differently expressed genes (DEGs), which are closely associated with grain β-glucan content, are mainly involved in hydrolase activity and glucan metabolic processes. In addition, β-glucan accumulation in barley grains is predominantly regulated by photosynthesis and carbon metabolism. The DEGs identified in this study and their functions may provide new insights into the molecular mechanisms of β-glucan synthesis and genotypic differences in barley grains.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"5 ","pages":"Article 100136"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/2c/main.PMC9513732.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The presence of β-glucan in barley grains is one of its important quality traits. Lower β-glucan content is required for the barley used in beer and feed production, while higher β-glucan content is beneficial for food barley. Although intensive research has been carried out on the genotypic and environmental differences in β-glucan content in barley grains, little information is available on the molecular mechanisms underlying their genotypic differences and genetic regulation of β-glucan synthesis and accumulation. In this study, RNA sequencing analysis was conducted to compare the transcriptome profiles of two barley genotypes (BCS192 and BCS297) that greatly differ in grain β-glucan content, in order to identify the key genes responsible for β-glucan synthesis and accumulation during grain development. The results showed that carbohydrate metabolic processes and starch and sucrose metabolism play significant roles in β-glucan synthesis. The identified differently expressed genes (DEGs), which are closely associated with grain β-glucan content, are mainly involved in hydrolase activity and glucan metabolic processes. In addition, β-glucan accumulation in barley grains is predominantly regulated by photosynthesis and carbon metabolism. The DEGs identified in this study and their functions may provide new insights into the molecular mechanisms of β-glucan synthesis and genotypic differences in barley grains.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.