Ke Sun, Dezhi Tan, Xinyuan Fang, Xintao Xia, Dajun Lin, Juan Song, Yonghong Lin, Zhaojun Liu, Min Gu, Yuanzheng Yue, Jianrong Qiu
{"title":"Three-dimensional direct lithography of stable perovskite nanocrystals in glass","authors":"Ke Sun, Dezhi Tan, Xinyuan Fang, Xintao Xia, Dajun Lin, Juan Song, Yonghong Lin, Zhaojun Liu, Min Gu, Yuanzheng Yue, Jianrong Qiu","doi":"10.1126/science.abj2691","DOIUrl":null,"url":null,"abstract":"<div >Material composition engineering and device fabrication of perovskite nanocrystals (PNCs) in solution can introduce organic contamination and entail several synthetic, processing, and stabilization steps. We report three-dimensional (3D) direct lithography of PNCs with tunable composition and bandgap in glass. The halide ion distribution was controlled at the nanoscale with ultrafast laser–induced liquid nanophase separation. The PNCs exhibit notable stability against ultraviolet irradiation, organic solution, and high temperatures (up to 250°C). Printed 3D structures in glass were used for optical storage, micro–light emitting diodes, and holographic displays. The proposed mechanisms of both PNC formation and composition tunability were verified.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"375 6578","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/science.abj2691","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.abj2691","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 109
Abstract
Material composition engineering and device fabrication of perovskite nanocrystals (PNCs) in solution can introduce organic contamination and entail several synthetic, processing, and stabilization steps. We report three-dimensional (3D) direct lithography of PNCs with tunable composition and bandgap in glass. The halide ion distribution was controlled at the nanoscale with ultrafast laser–induced liquid nanophase separation. The PNCs exhibit notable stability against ultraviolet irradiation, organic solution, and high temperatures (up to 250°C). Printed 3D structures in glass were used for optical storage, micro–light emitting diodes, and holographic displays. The proposed mechanisms of both PNC formation and composition tunability were verified.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.