A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2021-06-01 Epub Date: 2021-08-09 DOI:10.1214/20-aos1980
Jianqing Fan, Weichen Wang, Ziwei Zhu
{"title":"A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY.","authors":"Jianqing Fan,&nbsp;Weichen Wang,&nbsp;Ziwei Zhu","doi":"10.1214/20-aos1980","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a simple principle for robust statistical inference via appropriate shrinkage on the data. This widens the scope of high-dimensional techniques, reducing the distributional conditions from sub-exponential or sub-Gaussian to more relaxed bounded second or fourth moment. As an illustration of this principle, we focus on robust estimation of the low-rank matrix <b>Θ</b>* from the trace regression model <i>Y</i> = Tr(<b>Θ</b>*<sup>⊤</sup> <b>X</b>) + <i>ϵ</i>. It encompasses four popular problems: sparse linear model, compressed sensing, matrix completion and multi-task learning. We propose to apply the penalized least-squares approach to the appropriately truncated or shrunk data. Under only bounded 2+<i>δ</i> moment condition on the response, the proposed robust methodology yields an estimator that possesses the same statistical error rates as previous literature with sub-Gaussian errors. For sparse linear model and multi-task regression, we further allow the design to have only bounded fourth moment and obtain the same statistical rates. As a byproduct, we give a robust covariance estimator with concentration inequality and optimal rate of convergence in terms of the spectral norm, when the samples only bear bounded fourth moment. This result is of its own interest and importance. We reveal that under high dimensions, the sample covariance matrix is not optimal whereas our proposed robust covariance can achieve optimality. Extensive simulations are carried out to support the theories.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457508/pdf/nihms-1639579.pdf","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aos1980","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 69

Abstract

This paper introduces a simple principle for robust statistical inference via appropriate shrinkage on the data. This widens the scope of high-dimensional techniques, reducing the distributional conditions from sub-exponential or sub-Gaussian to more relaxed bounded second or fourth moment. As an illustration of this principle, we focus on robust estimation of the low-rank matrix Θ* from the trace regression model Y = Tr(Θ* X) + ϵ. It encompasses four popular problems: sparse linear model, compressed sensing, matrix completion and multi-task learning. We propose to apply the penalized least-squares approach to the appropriately truncated or shrunk data. Under only bounded 2+δ moment condition on the response, the proposed robust methodology yields an estimator that possesses the same statistical error rates as previous literature with sub-Gaussian errors. For sparse linear model and multi-task regression, we further allow the design to have only bounded fourth moment and obtain the same statistical rates. As a byproduct, we give a robust covariance estimator with concentration inequality and optimal rate of convergence in terms of the spectral norm, when the samples only bear bounded fourth moment. This result is of its own interest and importance. We reveal that under high dimensions, the sample covariance matrix is not optimal whereas our proposed robust covariance can achieve optimality. Extensive simulations are carried out to support the theories.

重尾数据的收缩原理:高维稳健低秩矩阵恢复。
本文介绍了一种通过对数据进行适当收缩来进行稳健统计推断的简单原理。这拓宽了高维技术的范围,将分布条件从亚指数或亚高斯减少到更宽松的有界二阶或四阶矩。作为这一原理的说明,我们专注于从迹回归模型Y=Tr(Θ*⊤X)+Γ对低秩矩阵Θ*的鲁棒估计。它包括四个常见的问题:稀疏线性模型、压缩感知、矩阵完成和多任务学习。我们建议将惩罚最小二乘法应用于适当截断或收缩的数据。在只有响应的有界2+δ矩条件下,所提出的鲁棒方法产生了一个估计器,该估计器具有与先前文献相同的统计误差率,具有亚高斯误差。对于稀疏线性模型和多任务回归,我们进一步允许设计只有有界的四阶矩,并获得相同的统计率。作为副产品,当样本仅具有有界四阶矩时,我们根据谱范数给出了一个具有浓度不等式和最优收敛率的鲁棒协方差估计器。这一结果有其自身的利益和重要性。我们揭示了在高维下,样本协方差矩阵不是最优的,而我们提出的鲁棒协方差可以实现最优性。进行了大量的模拟来支持这些理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信