Brooks A. Abel, Rachel L. Snyder, Geoffrey W. Coates
{"title":"Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals","authors":"Brooks A. Abel, Rachel L. Snyder, Geoffrey W. Coates","doi":"10.1126/science.abh0626","DOIUrl":null,"url":null,"abstract":"<div >Identifying plastics capable of chemical recycling to monomer (CRM) is the foremost challenge in creating a sustainable circular plastic economy. Polyacetals are promising candidates for CRM but lack useful tensile strengths owing to the low molecular weights produced using current uncontrolled cationic ring-opening polymerization (CROP) methods. Here, we present reversible-deactivation CROP of cyclic acetals using a commercial halomethyl ether initiator and an indium(III) bromide catalyst. Using this method, we synthesize poly(1,3-dioxolane) (PDXL), which demonstrates tensile strength comparable to some commodity polyolefins. Depolymerization of PDXL using strong acid catalysts returns monomer in near-quantitative yield and even proceeds from a commodity plastic waste mixture. Our efficient polymerization method affords a tough thermoplastic that can undergo selective depolymerization to monomer.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/science.abh0626","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.abh0626","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 109
Abstract
Identifying plastics capable of chemical recycling to monomer (CRM) is the foremost challenge in creating a sustainable circular plastic economy. Polyacetals are promising candidates for CRM but lack useful tensile strengths owing to the low molecular weights produced using current uncontrolled cationic ring-opening polymerization (CROP) methods. Here, we present reversible-deactivation CROP of cyclic acetals using a commercial halomethyl ether initiator and an indium(III) bromide catalyst. Using this method, we synthesize poly(1,3-dioxolane) (PDXL), which demonstrates tensile strength comparable to some commodity polyolefins. Depolymerization of PDXL using strong acid catalysts returns monomer in near-quantitative yield and even proceeds from a commodity plastic waste mixture. Our efficient polymerization method affords a tough thermoplastic that can undergo selective depolymerization to monomer.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.