{"title":"Role of phase partitioning in coordinating DNA damage response: focus on the Apurinic Apyrimidinic Endonuclease 1 interactome.","authors":"Damiano Tosolini, Giulia Antoniali, Emiliano Dalla, Gianluca Tell","doi":"10.1515/bmc-2020-0019","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) is a way to concentrate biochemical reactions while excluding noninteracting components. Disordered domains of proteins, as well as interaction with RNA, favor condensation but are not mandatory for modulating this process. Recent insights about phase-separation mechanisms pointed to new fascinating models that could explain how cells could cope with DNA damage responses, conferring both spatial and temporal fine regulation. APE1 is a multifunctional protein belonging to the Base Excision Repair (BER) pathway, bearing additional 'non-canonical' DNA-repair functions associated with processes like RNA metabolism. Recently, it has been highlighted that several DNA repair enzymes, such as 53BP1 and APE1, are endowed with RNA binding abilities. In this work, after reviewing the recent literature supporting a role of LLPS in DDR, we analyze, as a proof of principle, the interactome of APE1 using a bioinformatics approach to look for clues of LLPS in BER. Some of the APE1 interactors are associated with cellular processes in which LLPS has been either proved or proposed and are involved in different pathogenic events. This work might represent a paradigmatical pipeline for evaluating the relevance of LLPS in DDR.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"209-220"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bmc-2020-0019","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
Liquid-liquid phase separation (LLPS) is a way to concentrate biochemical reactions while excluding noninteracting components. Disordered domains of proteins, as well as interaction with RNA, favor condensation but are not mandatory for modulating this process. Recent insights about phase-separation mechanisms pointed to new fascinating models that could explain how cells could cope with DNA damage responses, conferring both spatial and temporal fine regulation. APE1 is a multifunctional protein belonging to the Base Excision Repair (BER) pathway, bearing additional 'non-canonical' DNA-repair functions associated with processes like RNA metabolism. Recently, it has been highlighted that several DNA repair enzymes, such as 53BP1 and APE1, are endowed with RNA binding abilities. In this work, after reviewing the recent literature supporting a role of LLPS in DDR, we analyze, as a proof of principle, the interactome of APE1 using a bioinformatics approach to look for clues of LLPS in BER. Some of the APE1 interactors are associated with cellular processes in which LLPS has been either proved or proposed and are involved in different pathogenic events. This work might represent a paradigmatical pipeline for evaluating the relevance of LLPS in DDR.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.