{"title":"Alzheimer's disease: exploring nature's 'medicinal chest' for new therapeutic agents.","authors":"Anthony Tsarbopoulos","doi":"10.1515/bmc-2020-0018","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products have served humanity as a valuable source for the discovery and development of therapeutic agents. In addition, these phytochemicals can function as lead compounds for the development of synthetic analogs aimed at treating human diseases. In our aging society, Alzheimer's disease (AD) is the most common cause of dementia, which is characterized by a significant and progressive loss of memory and other cognitive functions. As society demographics change, the predominance of AD and other age-related dementias is increasing, with concurrent financial and societal costs.AD represents one of the most remarkable scientific challenges for drug discovery as the search for effective disease-modifying agents has been unsuccessful. Medicinal plants have been used for their \"anti-aging\" properties, and cognitive enhancing properties. In the past decades, natural products have been studied for their anti-AD properties, and their potential for developing therapeutic agents against several molecular targets has been evaluated. This insight evaluates the prospects of medicinal plants for providing disease-modifying, as well as disease-preventing, agents for AD.</p>","PeriodicalId":38392,"journal":{"name":"Biomolecular Concepts","volume":" ","pages":"201-208"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bmc-2020-0018","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Concepts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmc-2020-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3
Abstract
Natural products have served humanity as a valuable source for the discovery and development of therapeutic agents. In addition, these phytochemicals can function as lead compounds for the development of synthetic analogs aimed at treating human diseases. In our aging society, Alzheimer's disease (AD) is the most common cause of dementia, which is characterized by a significant and progressive loss of memory and other cognitive functions. As society demographics change, the predominance of AD and other age-related dementias is increasing, with concurrent financial and societal costs.AD represents one of the most remarkable scientific challenges for drug discovery as the search for effective disease-modifying agents has been unsuccessful. Medicinal plants have been used for their "anti-aging" properties, and cognitive enhancing properties. In the past decades, natural products have been studied for their anti-AD properties, and their potential for developing therapeutic agents against several molecular targets has been evaluated. This insight evaluates the prospects of medicinal plants for providing disease-modifying, as well as disease-preventing, agents for AD.
Biomolecular ConceptsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.30
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊介绍:
BioMolecular Concepts is a peer-reviewed open access journal fostering the integration of different fields of biomolecular research. The journal aims to provide expert summaries from prominent researchers, and conclusive extensions of research data leading to new and original, testable hypotheses. Aspects of research that can promote related fields, and lead to novel insight into biological mechanisms or potential medical applications are of special interest. Original research articles reporting new data of broad significance are also welcome. Topics: -cellular and molecular biology- genetics and epigenetics- biochemistry- structural biology- neurosciences- developmental biology- molecular medicine- pharmacology- microbiology- plant biology and biotechnology.