Holography: application to high-resolution imaging

IF 1.8 4区 工程技术
Microscopy Pub Date : 2020-11-01 DOI:10.1093/jmicro/dfaa050
Takeshi Kawasaki;Yoshio Takahashi;Toshiaki Tanigaki
{"title":"Holography: application to high-resolution imaging","authors":"Takeshi Kawasaki;Yoshio Takahashi;Toshiaki Tanigaki","doi":"10.1093/jmicro/dfaa050","DOIUrl":null,"url":null,"abstract":"Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.","PeriodicalId":18515,"journal":{"name":"Microscopy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/jmicro/dfaa050","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9433130/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.
全息:在高分辨率成像中的应用
电子全息术是为了校正电子显微镜透镜的像差而发明的。经过几十年的研究,它被用来观察晶体中的原子排列。然后将其与硬件像差校正器相结合,实现高分辨率和高精度的分析。它的应用进一步扩展到亚纳米分辨率的磁性观测。高分辨率电子全息术已成为观测功能材料中电磁分布的一种强大技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy
Microscopy 工程技术-显微镜技术
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信