A Eskandari, R Soori, S Choobineh, Z Mazaheri Tirani
{"title":"Exercise promotes heart regeneration in aged rats by increasing regenerative factors in myocardial tissue.","authors":"A Eskandari, R Soori, S Choobineh, Z Mazaheri Tirani","doi":"10.1556/2060.2020.00008","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise-induced stem cell activation is implicated in cardiovascular regeneration. However, ageing limits the capacity of cellular and molecular remodelling of the heart. It has been shown that exercise improves structure regeneration and function in the process of ageing. Aged male Wistar rats (n = 24) were divided into three groups: Control (CO), High-intensity interval training (HIIT) (80-100% of the maximum speed), and continuous endurance training (CET) (60-70% of the maximum speed) groups. Training groups were trained for 6 weeks. The expression of the Nkx2.5 gene was determined by real-time (RT-PCRs) analysis. Immunohistochemical staining was performed to assess the C-kit positive cardiac progenitor and Ki67 positive cells. The mRNA level of Nkx2.5 was significantly increased in the CET and HIIT groups (P < 0.05). Also, cardiac progenitor cells positive for C-kit were increased in both the CET and HIIT groups (P < 0.05). Exercise training improved the ejection fraction and fractional shortening in both training groups (P < 0.05). This study indicated that training initiates the activation of cardiac progenitor cells, leading to the generation of new myocardial cells (R = 0.737, P = 0.001). It seems that C-kit positive cells in training groups showed an increase in the expression of some transcription factors (Nkx2.5 gene), representing an increased regenerative capacity of cardiomyocytes during the training period. These findings suggest that the endogenous regenerative capacity of the adult heart, mediated by cardiac stem cells, would be increased in response to exercise.</p>","PeriodicalId":20058,"journal":{"name":"Physiology international","volume":"107 1","pages":"166-176"},"PeriodicalIF":2.2000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2060.2020.00008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Exercise-induced stem cell activation is implicated in cardiovascular regeneration. However, ageing limits the capacity of cellular and molecular remodelling of the heart. It has been shown that exercise improves structure regeneration and function in the process of ageing. Aged male Wistar rats (n = 24) were divided into three groups: Control (CO), High-intensity interval training (HIIT) (80-100% of the maximum speed), and continuous endurance training (CET) (60-70% of the maximum speed) groups. Training groups were trained for 6 weeks. The expression of the Nkx2.5 gene was determined by real-time (RT-PCRs) analysis. Immunohistochemical staining was performed to assess the C-kit positive cardiac progenitor and Ki67 positive cells. The mRNA level of Nkx2.5 was significantly increased in the CET and HIIT groups (P < 0.05). Also, cardiac progenitor cells positive for C-kit were increased in both the CET and HIIT groups (P < 0.05). Exercise training improved the ejection fraction and fractional shortening in both training groups (P < 0.05). This study indicated that training initiates the activation of cardiac progenitor cells, leading to the generation of new myocardial cells (R = 0.737, P = 0.001). It seems that C-kit positive cells in training groups showed an increase in the expression of some transcription factors (Nkx2.5 gene), representing an increased regenerative capacity of cardiomyocytes during the training period. These findings suggest that the endogenous regenerative capacity of the adult heart, mediated by cardiac stem cells, would be increased in response to exercise.
期刊介绍:
The journal provides a forum for important new research papers written by eminent scientists on experimental medical sciences. Papers reporting on both original work and review articles in the fields of basic and clinical physiology, pathophysiology (from the subcellular organization level up to the oranizmic one), as well as related disciplines, including history of physiological sciences, are accepted.