Planning High-Quality Motions for Concentric Tube Robots in Point Clouds via Parallel Sampling and Optimization.

Alan Kuntz, Mengyu Fu, Ron Alterovitz
{"title":"Planning High-Quality Motions for Concentric Tube Robots in Point Clouds via Parallel Sampling and Optimization.","authors":"Alan Kuntz,&nbsp;Mengyu Fu,&nbsp;Ron Alterovitz","doi":"10.1109/IROS40897.2019.8968172","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method that plans motions for a concentric tube robot to automatically reach surgical targets inside the body while avoiding obstacles, where the patient's anatomy is represented by point clouds. Point clouds can be generated intra-operatively via endoscopic instruments, enabling the system to update obstacle representations over time as the patient anatomy changes during surgery. Our new motion planning method uses a combination of sampling-based motion planning methods and local optimization to efficiently handle point cloud data and quickly compute high quality plans. The local optimization step uses an interior point optimization method, ensuring that the computed plan is feasible and avoids obstacles at every iteration. This enables the motion planner to run in an anytime fashion, i.e., the method can be stopped at any time and the best solution found up until that point is returned. We demonstrate the method's efficacy in three anatomical scenarios, including two generated from endoscopic videos of real patient anatomy.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2019 ","pages":"2205-2212"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS40897.2019.8968172","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS40897.2019.8968172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present a method that plans motions for a concentric tube robot to automatically reach surgical targets inside the body while avoiding obstacles, where the patient's anatomy is represented by point clouds. Point clouds can be generated intra-operatively via endoscopic instruments, enabling the system to update obstacle representations over time as the patient anatomy changes during surgery. Our new motion planning method uses a combination of sampling-based motion planning methods and local optimization to efficiently handle point cloud data and quickly compute high quality plans. The local optimization step uses an interior point optimization method, ensuring that the computed plan is feasible and avoids obstacles at every iteration. This enables the motion planner to run in an anytime fashion, i.e., the method can be stopped at any time and the best solution found up until that point is returned. We demonstrate the method's efficacy in three anatomical scenarios, including two generated from endoscopic videos of real patient anatomy.

基于并行采样和优化的同心圆管机器人点云高质量运动规划。
我们提出了一种方法来规划同心管机器人的运动,使其在避开障碍物的同时自动到达体内的手术目标,其中患者的解剖结构由点云表示。点云可以通过内窥镜仪器在术中生成,使系统能够随着患者解剖结构在手术过程中的变化而更新障碍表征。该方法将基于采样的运动规划方法与局部优化相结合,有效地处理点云数据,快速计算出高质量的运动规划。局部优化步骤采用内点优化方法,保证了每次迭代计算方案的可行性和避障性。这使得运动规划器可以随时运行,也就是说,该方法可以在任何时候停止,并且在返回该点之前找到最佳解决方案。我们在三种解剖场景中展示了该方法的有效性,其中包括两种来自真实患者解剖的内窥镜视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信