{"title":"A ROBUST AND EFFICIENT APPROACH TO CAUSAL INFERENCE BASED ON SPARSE SUFFICIENT DIMENSION REDUCTION.","authors":"Shujie Ma, Liping Zhu, Zhiwei Zhang, Chih-Ling Tsai, Raymond J Carroll","doi":"10.1214/18-AOS1722","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental assumption used in causal inference with observational data is that treatment assignment is ignorable given measured confounding variables. This assumption of no missing confounders is plausible if a large number of baseline covariates are included in the analysis, as we often have no prior knowledge of which variables can be important confounders. Thus, estimation of treatment effects with a large number of covariates has received considerable attention in recent years. Most existing methods require specifying certain parametric models involving the outcome, treatment and confounding variables, and employ a variable selection procedure to identify confounders. However, selection of a proper set of confounders depends on correct specification of the working models. The bias due to model misspecification and incorrect selection of confounding variables can yield misleading results. We propose a robust and efficient approach for inference about the average treatment effect via a flexible modeling strategy incorporating penalized variable selection. Specifically, we consider an estimator constructed based on an efficient influence function that involves a propensity score and an outcome regression. We then propose a new sparse sufficient dimension reduction method to estimate these two functions without making restrictive parametric modeling assumptions. The proposed estimator of the average treatment effect is asymptotically normal and semiparametrically efficient without the need for variable selection consistency. The proposed methods are illustrated via simulation studies and a biomedical application.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"47 3","pages":"1505-1535"},"PeriodicalIF":3.2000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/18-AOS1722","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/18-AOS1722","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 25
Abstract
A fundamental assumption used in causal inference with observational data is that treatment assignment is ignorable given measured confounding variables. This assumption of no missing confounders is plausible if a large number of baseline covariates are included in the analysis, as we often have no prior knowledge of which variables can be important confounders. Thus, estimation of treatment effects with a large number of covariates has received considerable attention in recent years. Most existing methods require specifying certain parametric models involving the outcome, treatment and confounding variables, and employ a variable selection procedure to identify confounders. However, selection of a proper set of confounders depends on correct specification of the working models. The bias due to model misspecification and incorrect selection of confounding variables can yield misleading results. We propose a robust and efficient approach for inference about the average treatment effect via a flexible modeling strategy incorporating penalized variable selection. Specifically, we consider an estimator constructed based on an efficient influence function that involves a propensity score and an outcome regression. We then propose a new sparse sufficient dimension reduction method to estimate these two functions without making restrictive parametric modeling assumptions. The proposed estimator of the average treatment effect is asymptotically normal and semiparametrically efficient without the need for variable selection consistency. The proposed methods are illustrated via simulation studies and a biomedical application.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.