Needle-Tissue Interaction Force State Estimation for Robotic Surgical Suturing.

Russell C Jackson, Viraj Desai, Jean P Castillo, M Cenk Çavuşoğlu
{"title":"Needle-Tissue Interaction Force State Estimation for Robotic Surgical Suturing.","authors":"Russell C Jackson,&nbsp;Viraj Desai,&nbsp;Jean P Castillo,&nbsp;M Cenk Çavuşoğlu","doi":"10.1109/IROS.2016.7759539","DOIUrl":null,"url":null,"abstract":"<p><p>Robotically Assisted Minimally Invasive Surgery (RAMIS) offers many advantages over manual surgical techniques. Most of the limitations of RAMIS stem from its non-intuitive user interface and costs. One way to mitigate some of the limitations is to automate surgical subtasks (e.g. suturing) such that they are performed faster while allowing the surgeon to plan the next step of the procedure. One component of successful suture automation is minimizing the internal tissue deformation forces generated by driving a needle through tissue. Minimizing the internal tissue forces requires segmenting the tissue deformation forces from other components of the needle tissue interaction (e.g. friction force). This paper proposes an Unscented Kalman Filter which can successfully model the force components, in particular the internal deformation force, generated by a needle as it is driven through a sample of tissue.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2016 ","pages":"3659-3664"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2016.7759539","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Robotically Assisted Minimally Invasive Surgery (RAMIS) offers many advantages over manual surgical techniques. Most of the limitations of RAMIS stem from its non-intuitive user interface and costs. One way to mitigate some of the limitations is to automate surgical subtasks (e.g. suturing) such that they are performed faster while allowing the surgeon to plan the next step of the procedure. One component of successful suture automation is minimizing the internal tissue deformation forces generated by driving a needle through tissue. Minimizing the internal tissue forces requires segmenting the tissue deformation forces from other components of the needle tissue interaction (e.g. friction force). This paper proposes an Unscented Kalman Filter which can successfully model the force components, in particular the internal deformation force, generated by a needle as it is driven through a sample of tissue.

Abstract Image

Abstract Image

Abstract Image

机器人手术缝合中针-组织相互作用力状态估计。
与人工手术技术相比,机器人辅助微创手术(RAMIS)具有许多优点。RAMIS的大多数限制源于其不直观的用户界面和成本。减轻某些限制的一种方法是自动化手术子任务(例如缝合),这样它们可以更快地执行,同时允许外科医生计划手术的下一步。成功的缝合自动化的一个组成部分是最大限度地减少内部组织变形力产生的驱动针通过组织。最小化内部组织力需要从针组织相互作用的其他成分(例如摩擦力)中分割组织变形力。本文提出了一种无气味卡尔曼滤波器,它可以成功地模拟力分量,特别是内部变形力,当针穿过组织样本时产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信